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Abstract 

Cell adhesion to extracellular matrix (ECM) is critical to various cellular 

processes like cell spreading, migration, growth and apoptosis. At the tissue level, cell 

adhesion is important in the pathological and physiological processes that regulate the 

tissue morphogenesis. Cell adhesion to the ECM is primarily mediated by the integrin 

family of receptors. The receptors that are recruited to the surface are reinforced by 

structural and signaling proteins at the adhesive sites forming focal adhesions that 

connect the cytoskeleton to further stabilize the adhesions. The functional roles of these 

focal adhesions extend beyond stabilizing adhesions and transduce mechanical signals at 

the cell-ECM interface in various signaling events. The objective of this research is to 

analyze the role of the spatial distribution of the focal adhesions in stabilizing the cell 

adhesion to the ECM in relation to cell’s internal force balance. 

The central hypothesis was that peripheral focal adhesions stabilize cell adhesion 

to ECM by providing for maximum mechanical advantage for resisting detachment as 

explained by the membrane peeling mechanism. Micropatterning techniques combined 

with robust hydrodynamic shear assay were employed to test our hypothesis. However, 

technical difficulties in microcontact printing stamps with small and sparse features made 

it challenging to analyze the role of peripheral focal adhesions in stabilizing cell 

adhesion. To overcome this limitation, the roof collapse phenomenon in stamps with 

small and sparse features (low fill factor stamps) that was detrimental to the reproduction 

of the adhesive geometries required to test the hypothesis was analyzed. This analysis 
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lead to the valuable insight that the non-uniform pressure distribution during initial 

contact caused by parallelism error during manual microcontact printing prevented 

accurate replication of features on the substrate. To this end, the template of the stamp 

was modified so that it included an annular column around the pattern zone that acted as 

a collapse barrier and prevented roof collapse propagation into the pattern zone. 

Employing this modified stamp, the required geometries for the cell adhesion analysis 

were successfully reproduced on the substrates with high throughput. 

Adhesive areas were engineered with circular and annular patterns to discern the 

contribution of peripheral focal adhesions towards cell adhesion strength. The patterns 

were engineered such that two distinct geometries with either constant adhesive area or 

constant spreading area were obtained. The significance of annular patterns is that for the 

same total adhesive area as the circular pattern, the annular pattern provided for greater 

cell spreading thereby increasing the distance of the focal adhesions from the cell’s 

center. The adhesion strength analysis was accomplished by utilizing hydrodynamic 

shear flow in a spinning disk device that was previously developed. The results indicate 

that for a constant total adhesive area, the annular patterns provide for greater adhesion 

strength by enhancing cell spreading area and providing for greater moment arm in 

resisting detachment due to shear. 

The next examination was the effect of the cell’s internal force balance in 

stabilizing the cell adhesion. The working hypothesis was that microtubules provide the 

necessary forces to resist the tensile forces expressed by the cell contractile machinery, 

thereby stabilizing cell adhesion. Since microtubule disruption is known to enhance cell 

contractility, its effect on the cell adhesion strength was examined. Moreover, the force 
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balance in cells was altered by engineering adhesive areas so that the cells were either 

spherical or completely spread and then disrupted microtubules to understand the 

significance of the force balance in modulating the cell adhesion strength. The results 

indicated that disruption of microtubules in cells on adhesive islands resulted in a 10 fold 

decrease in adhesion strength compared to untreated controls whereas no significant 

change was observed in completely spread cells between treated and untreated controls. 

This is in surprising contrast to the previous contractility inhibition studies which indicate 

a less pronounced regulation of adhesion strength for both micropatterned and spread 

cells. Taken together, these findings suggest that the internal force balance regulated by 

cell shape strongly modulates the adhesion strength though the microtubule network. 

In summary, this project elucidates the role of peripheral focal adhesions in 

regulating the cell adhesion strength. Furthermore, this study also establishes the 

importance of the internal force balance towards stabilizing the cell adhesion to the ECM 

through the microtubule network. 
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Chapter 1. Introduction 

1.1 Project Significance 

Cell adhesion to the extracellular matrix (ECM) is a key to a cascade of cellular 

events that govern the fate of the cell. While biochemical events explain signaling 

mechanisms in a cell, a mechanistic understanding of the cell adhesion process provides 

critical information on various cues that control mechanosensation, mechanotransduction 

and mechanoresponse. Integrin-mediated cell adhesion to the ECM is central to cell 

survival, migration, differentiation and proliferation. While significant contributions have 

been made in identifying the functional roles of key components involved in cell 

adhesion, there is still a gap in the understanding of the structure-function relationships 

that govern the cell adhesion process. Specifically, cell adhesion is understood to be 

strongly modulated by cell adhesive area which itself is tightly coupled to the spatial 

focal adhesion (FA) organization. Hence it is unclear whether the spatial organization of 

FAs or the total available cell adhesive area is responsible for the adhesion strength. This 

research project is significant because it provides critical information on adhesion 

strength modulation by delineating the contributions of spatial FA organization from total 

available adhesive area. Moreover, these analyses along with systematic investigation on 

the mechanistic connections between the cytoskeletal architecture and the FA sites 

provide valuable information necessary to decipher the mechanisms of cellular force 

balance which has been identified as a key that governs various cellular processes. The 

goal of the project was to provide new insights into the positional role of FAs in 
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modulating cell-substrate adhesion strength in relation to the cell internal cytoskeletal 

architecture. Moreover, present models of cell adhesion consider the interactions of 

cytoskeletal components (especially actin stress fibers) through FAs at the adhesion sites. 

This research incorporates the role of compressive structures (microtubules) in regulating 

the adhesion strength. This investigation fills the void in understanding the cellular force 

balance and deciphers the mechanism by which bidirectional cell adhesive interactions 

take place that influence both local and global cellular functions.  

1.2 Specific Aims 

 The objective of this project was to elucidate the role of FAs in modulating cell 

adhesion strength by systematically manipulating the adhesive interfaces. The central 

hypothesis was that peripheral focal adhesions stabilize cell adhesion to ECM by 

providing for maximum mechanical advantage for resisting detachment as explained by 

the membrane peeling mechanism. The objective was achieved through verification of 

the central hypothesis by addressing the following specific aims: 

 Aim 1 was to develop a microcontact printing technique capable of accurately 

replicating sparse sub-cellular scale patterns on substrates  

The working hypothesis was that a modified stamp design enables microcontact 

printing technique to be employed in patterning substrates using stamps with fill factors 

(defined as the ratio of the combined lateral area of the features to the total stamp area) 

lower than 1%. This technique coupled with usage of mixed self assembled monolayers 

(SAMs) provided the non-fouling background necessary to achieve selective protein 

patterning over large areas to control cell spreading for cell adhesion analyses. Thus, a 
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high-throughput yield of patterned substrates that maintain protein activity under 

extended cell culture conditions for quantitative studies was obtained. 

 Aim 2 was to elucidate the role of the spatial distribution of focal adhesions in 

modulating cell-substrate adhesion strength. 

The working hypothesis was that distribution of focal adhesions away from the 

cell center towards the periphery is more efficient in stabilizing cell attachment than 

uniformly distributed focal adhesions. Adhesion strength was analyzed as a function of 

total available cell adhesive area by varying the extent of cell spreading using 

micropatterned substrates. The role of FA in modulating cell adhesion strength was 

determined by distributing the total available area for FA formation to allow greater 

extent of cell spreading. This enabled the investigation whether the spatial position of FA 

modulates adhesion strength (by varying the extent of cell spreading) independently of 

the total available adhesive area (by curbing the extent of cell spreading). In addition, 

adhesion strength was also analyzed as a function of available cell spreading area by 

varying the total available adhesive area. This enabled the determination of whether the 

total available adhesive area modulated the adhesion strength over the spatial FA 

position.  

 Aim 3 was to analyze the contribution of cytoskeletal architecture towards cell 

adhesion strength in relation to the total available adhesive area and the extent 

of cell spreading. 

The working hypothesis was that the internal cytoskeletal architecture of the cell 

has a significant role in modulation of adhesion strength along with FA position. The 

investigation was geared towards determination of the contribution of the microtubule 
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network in modulating the cell adhesion strength. The rationale for the study was that 

microtubule network influences the cell internal force balance and the cell shape. The 

investigation was conducted by successively inhibiting the contractility machinery and 

microtubule polymerization using pharmacological inhibitors. This analyses enabled to 

fill the void in understanding the peripheral FA formation in relation to the cytoskeletal 

reorganization influencing the transfer of force balance from cell interior to the exterior 

(ECM) through FA.  
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Chapter 2. Literature Review 

2.1 Integrin Mediated Cell Adhesion 

 Cell adhesion to extracellular matrix (ECM) is critical for various anchorage 

dependent cells and regulates cellular homeostasis (Reddig, Juliano 2005). Moreover, cell 

adhesion to the ECM plays a dominant role in mediating and regulating important 

cellular processes including but not limited to cell spreading, cell migration, bidirectional 

signaling during morphogenesis, tissue homeostasis and wound healing (Disatnik, Rando 

1999, Berrier, Yamada 2007, Danen, Sonnenberg 2003, Price et al. 1998). Adhesion of 

cells to ECM components specifically fibronectin and laminin is initiated as a surface 

phenomenon and primarily mediated by transmembrane heterodimeric receptors that 

belong to the integrin family (Hynes 2002). This is a complex process involving 

recruitment of integrins to the cell surface, activation, and mechanical coupling to 

extracellular ligands (Garcia, Huber & Boettiger 1998). Recent studies have shown the 

involvement of integrins in force dependent signal transduction at the leading edge of the 

cell that actively take part in the adhesion complex formation, maturation and recycling 

thus regulating their binding affinity at respective stages (Puklin-Faucher, Sheetz 2009). 

Furthermore, integrin activation or ‘ligand-binding affinity’ is known to regulate cell 

adhesion, migration, mechanotransduction and also affect extracellular matrix assembly 

thereby playing a vital role in embryonic development and repair (Shattil, Kim & 

Ginsberg 2010). These mechanically coupled receptors rapidly interact with the actin 

cytoskeleton and cluster together to form focal adhesions (FA)(Fig 2.1), large 
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supramolecular complexes that contain structural proteins like talin, vinculin and α-

actinin and signaling proteins, such as FAK, Src, and paxillin (Geiger et al. 2001). 

Supporting these studies, recent investigations suggest regulation of cell adhesion 

through changes in integrin’s affinity towards ECM ligands through initial triggering 

events, intermediate signaling events and finally, their interaction with cytoskeletal 

components (Shattil, Kim & Ginsberg 2010). Early work in cell adhesion was strictly 

restricted to initial binding responses (Lotz et al. 1989) as the cell morphology rapidly 

changed from a spherical to a more spread morphology and the usual shear assays used to 

quantify cell adhesion turn out to be invalid. While significant progress has been 

achieved in identifying key components in adhesion signaling, there is still a gap in our 

understanding of how adhesive structures regulate adhesion strength with respect to their 

spatial organization. 

2.2 Cell Adhesion Strengthening and Focal Adhesion Assembly 

 A widely accepted theory of cell adhesion strengthening was initially proposed by 

McClay and Erickson. Briefly, it is stated to be a two step process consisting of initial 

integrin-ligand binding followed by rapid strengthening (Lotz et al. 1989). The 

strengthening response is understood as a three stage process that includes (a) initial 

integrin-ligand binding and simultaneous increase in cell-substrate adhesive area (initial 

attachment and spreading), (b) increased receptor recruitment to the adhesive interface 

and (c) interactions with cytoskeletal components involving recruitment of intracellular 

proteins that lead to enhanced force distribution at the adhesive site via local membrane 

stiffening (focal adhesion assembly). Individual investigations of these events support the 

roles of these processes (Massia, Hubbell 1991, Maheshwari et al. 2000, Balaban et al. 
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2001b, Tan et al. 2003). Although these investigations explain significant roles of 

individual key components and processes (specifically in terms of cell spreading), an 

integrated understanding of cell adhesion strengthening is required. Pioneering work to 

quantify the adhesion strength and provide a mechanism for cell adhesion strengthening 

to fibronectin has been done by Gallant et.al (Gallant, Michael & Garcia 2005). A 

spinning disk device was validated for a hydrodynamic shear assay (Fig 2.2) which was 

used to apply a range of shear forces on a large population of cells to quantify adhesion 

strength (Garcia, Ducheyne & Boettiger 1997). The hydrodynamic shear assay was 

employed in combination with micropatterned surfaces that engineer focal adhesion 

assembly to analyze cell adhesion strengthening (Gallant et al. 2002). Initial studies using 

these approaches indicated that there was initial integrin binding and rapid strengthening 

subsequently ensued due to focal adhesion assembly (Garcia, Gallant 2003).  Specific 

contributions of adhesive area, integrin binding and focal adhesion assembly towards 

adhesion strengthening responses were also studied and quantified wherein it was 

observed that the adhesion strength varied nonlinearly with adhesive area and also the 

time of adhesion (Gallant, Michael & Garcia 2005). This nonlinearity in the adhesion 

strength was attributed to peripheral clustering of integrins and subsequent formation of 

FAs. A mathematical model was also developed to better explain the experimental data 

whose development was based on spatiotemporal distribution and clustering of integrins 

and subsequent formation of FAs (Gallant, Garcia 2007). Although, the mathematical 

model indicates that peripheral distribution of integrins could play a major role in 

modulating adhesion strength, experimental validation of the model remains elusive. 

  



8 

 

2.3 Model of Cell Adhesion Strengthening 

In addition to understanding the significance of biochemical events occurring 

during cell adhesion, mathematical models provide useful tools to analyze cellular 

processes and particularly enable validation of the conceptual models often used to 

interpret the experimental data. Several models have been developed to explain the multi-

step receptor mediated cell adhesion process (Bell, Dembo & Bongrand 1984, Evans 

1985, Hammer, Lauffenburger 1987, Dembo et al. 1988, Ward, Hammer 1993, Ward, 

Dembo & Hammer 1994, Kloboucek et al. 1999). Several of them focus on short term 

adhesion except the one by Ward and Hammer that models the influence of focal contact 

formation on adhesion strength (Ward, Hammer 1993). An in depth investigation by 

Gallant et al (Gallant, Michael & Garcia 2005) led to the development of an adhesion 

model that addresses long term adhesion as well (Gallant, Garcia 2007). Macroscopic and 

microscopic models were integrated to explain the contributions of receptor recruitment, 

clustering and focal adhesion assembly towards adhesion strengthening. The macroscopic 

model largely stems from the force balance for a cell in hydrodynamic shear flow (Fig 

2.3). Applying static equilibrium to the cell interface and using the analysis for a sphere 

near a wall in viscous flow developed by Goldman et al, the forces at the cell-substrate 

interface were evaluated (Goldman, Cox & Brenner 1967). In this model, the point of 

force application FT is prescribed to be at the periphery of the cell-substrate contact area 

assuming peeling model of cell detachment where the largest forces are at the periphery. 

The microscopic model examines the adhesion force exerted at the cell adhesive interface 

through an area that is subdivided into segments. Three conditions are considered with 

each segment consisting of bonds that connect the cell to the underlying substrate: (a) 
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uniformly distributed bonds across the adhesive area, (b) bonds that are clustered (the 

segments are filled from the outside to the inside as the segments get saturated with 

bonds), and (c) focal adhesion associated bonds (a fraction of bonds associated with the 

cytoskeleton are attributed to focal adhesions). 

 Cell detachment is assumed to occur by membrane peeling. In the case of 

uniformly distributed or clustered bonds, an exponential decay is applied from the 

periphery to the cell center while focal adhesion associated bonds are considered rigid, 

i.e. all bonds must break simultaneously. The resultant force and moment produced by 

each segment (Fi) is given by 

   i
ii eBfF  11   (2.1)

where f  is the individual bond strength, iB  is the number of bonds in segment i,    is 

exponential multiplier and   is the fraction of bonds associated with focal adhesions. 

Summing all the forces and moments would provide for the total adhesion force. This 

model predicts the non-linear variation in adhesion strength with adhesive area 

explaining the role of individual key components towards an integrated cell adhesion 

strengthening process. Although not yet experimentally validated for spatial FA 

distribution, this model accurately predicts the contribution of spatial distribution of the 

focal adhesions to cell adhesion strength. It can be inferred from this model that the 

exponential bond loading criterion provides for the fact that the peripheral focal 

adhesions modulate adhesion strength due to maximum moment arm provided to resist 

detachment during hydrodynamic flow. 
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2.4 Regulation of Cell Adhesion Strength by Complex Interplay Between Adhesive 

Components and Cytoskeletal Architecture  

 The mechanical coupling of integrins to actin stress fibers is known to be 

mediated by FA assembly, which further influences the cell shape and was established as 

a main regulator for FA assembly by transmitting force from the extracellular matrix to 

cytoskeletal components (Chen et al. 2003)(Parsons, Horwitz & Schwartz 2010, Maurin 

et al. 2008). It is well established that integrins interacting with ECM are coupled to the 

cellular cytoskeleton by several structural proteins, such as talin and vinculin (Ezzell et 

al. 1997, Chen, Ingber 1999, Wang, Butler & Ingber 1993, Maniotis, Chen & Ingber 

1997). Therefore, it may be possible to regulate the mechanical tension inside the cell by 

manipulating the cell adhesive interface. Several studies investigated micro and nano 

scale regulation of adhesive interface such as critical spacing between integrins so as to 

facilitate focal adhesion assembly and its effect on cell spreading and cell adhesion 

strength (Massia, Hubbell 1991, Cavalcanti-Adam et al. 2006, Cavalcanti-Adam et al. 

2007, Selhuber-Unkel et al. 2010). Many successful attempts have been made to 

understand the governance of cellular functions and the functional relevance of a 

multitude of structural and signaling adhesive components by probing the complex bio 

chemical processes of cell matrix adhesion. Extensive studies during the past decade 

indicate that mechanical tension generated within the cytoskeleton of living cells is 

emerging as a critical regulator of various biological functions of a cell (Chicurel, Chen 

& Ingber 1998).  Probing deeper into the mechanical interactions between cell and the 

substrate demonstrates the existence of an “inside-out” mechanism whereby changes in 

cell shape by global cell distortion increases the cytoskeletal tension and drives the 
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assembly of FA (Chen et al. 2003). As a complimentary approach, changing the elasticity 

of the underlying substrate in turn regulated the level of tension that a cell could exert on 

the substrate which directly affected the FA assembly. This result indicates the ability of 

a cell to transduce signals related to cell morphology and the extent of spreading 

(Balaban et al. 2001b, Yeung et al. 2005). Focal adhesions were also observed to be the 

anchorage points for the cell and the foci for application of large traction forces during 

cell migration (Ballestrem et al. 2000, Roy et al. 2002, Watanabe, Noritake & Kaibuchi 

2005, Fournier et al. 2010). In most of the previous analyses, cell contractility was 

considered as a modulator for cell adhesion (Geiger et al. 2001, Balaban et al. 2001b, 

Geiger, Bershadsky 2001). Careful analysis of the force balance interprets the adhesion 

signaling to be modulated by the microtubule network inside the cell owing to the 

internal force balance (Bershadsky et al. 1996, Bershadsky, Kozlov & Geiger 2006). 

Moreover, geometry based sensing is based on the cellular force balance between 

cytoskeletal components and adhesive components internal and external to the cell 

leading to a hypothesis that in addition to actin system, the microtubular system 

contributes actively to the cell adhesion strength (Vogel, Sheetz 2006).   

2.5 Quantitative Assays for Measuring Cell Adhesion 

 While various methods were developed to characterize cell adhesion, few of these 

actually quantify adhesion strength by physically detaching the cells from the substrate. 

Quantitative assays for measuring cell adhesion strength can broadly be divided into 

centrifugation, hydrodynamic shear and micromanipulation. Each of these broad 

spectrums of assays has their own advantages and different implications on the nature of 

the data obtained (Christ, Turner 2010).  
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2.5.1 Centrifugation Assay 

This assay is based on a population of cells. The most common method involves 

seeding cells in a multiwell plate and centrifuging the plate with the top surface of the 

plate facing outwards along the radial direction. This configuration allows cells to 

experience normal forces and detach. The remaining cells are quantified by either 

radioactive labeling (McClay, Wessel & Marchase 1981) or fluorescent imaging. 

Experiments are repeated multiple times at various speeds and the adhesion strength is 

quantified in terms of the force required to detach 50% of the cells from the surface. In 

most scenarios, this assay is used in relative comparisons between treatment conditions. 

 The force exerted on a cell in a centrifugation assay is given by 

 gRVF cellmediumcell /)( 2  (2.2)

where cell represents cell density, medium represents density of the medium, cellV

represents volume of the cell, R represents the radius from the center of the rotor to the 

plate,  represents the angular speed in rad/s, and g is the acceleration due to gravity. 

The limitation of this technique lies in the small forces that can be achieved. Hence it can 

only be applied in scenarios of weak adhesions. A slight variation of this assay has been 

extensively used in the early studies to investigate events during initial cell adhesion (<15 

min) in fibroblasts and glioma cells adhered to substrates coated with fibronectin or 

tenascin (Lotz et al. 1989). 

2.5.2 Hydrodynamic Shear Assay 

 Hydrodynamic shear assays involve application of well defined fluidic shear 

stresses to cells adhered to the substrate. Although, hydrodynamic forces can be applied 

in a variety of ways, three most employed techniques are by using spinning disk device, 
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radial flow chamber and the parallel plate flow chamber. Unique to all the hydrodynamic 

shear assays is that laminar flow in maintained near the cellular regime irrespective of the 

configuration that is determined by the low Reynolds number values obtained by, 

 


UD

Re  (2.3)

where  is the mass density of the fluid, U is the average velocity, D is the characteristic 

dimension and  is the fluid viscosity. 

 The wall shear stress induced by the flow of Newtonian fluid at which 50% of the 

cells detach that represents the mean adhesion strength of the cell is given by 

 

0

)(




y

dy

ydu  (2.4)

where )( yu represents the flow velocity and y is the distance from the wall in the normal 

direction. 

2.5.2.1 Spinning Disk Device 

The hydrodynamic shear assay is conducted using a spinning disk device which 

has been extensively characterized and employed in several cell adhesion investigations 

(Garcia, Huber & Boettiger 1998, Gallant, Michael & Garcia 2005, Garcia, Ducheyne & 

Boettiger 1997, Garcia, Gallant 2003). The concept used in the spinning disk is that the 

hydrodynamic shear force induced due to the flow over the cells that are attached to a 

substrate would detach the cells off the surface. The detachment force is proportional to 

the hydrodynamic wall shear stress τ. The equation for the wall shear stress is  

 38.0  r  (2.5)
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where r is the radial distance from the center of the disk (spinning axis), ρ is the fluid 

density, µ is the fluid viscosity, and ω is the rotational speed. Following spinning for 5 

min, the remaining adherent cells were fixed in 3.7% formaldehyde, permeabilized with 

0.1% Triton X-100, and stained with Hoechst to label the nuclei. The number of adherent 

cells is counted at specific radial positions using a fluorescent microscope fitted with a 

motorized stage and imaging software. Sixty one fields are analyzed per substrate and the 

number of cells at specific radial locations was then normalized to the number of cells at 

the center of the substrate where negligible shear stress was applied giving the fraction of 

adherent cells (f). The detachment profile (f vs. τ) was then fit to a sigmoid curve given 

by 

 
 501

1
 


be

f  (2.6)

The shear stress for 50% detachment (τ50) is used as the mean cell adhesion 

strength. 

2.5.2.2 Radial Flow Chamber 

 The hydrodynamic flow in radial flow chambers is achieved by the outward flow 

of fluid from the center of the circular chamber over the cells adhered to the chamber 

wall. Therefore, the shear stress decreases with increasing radial distance from the center 

of the disk nonlinearly. This configuration contrasts the spinning disk in the sense that the 

substrate containing the adhered cells is stationary in radial flow chambers whereas in the 

spinning disk, the surface to which the cells are adhered is in motion. The shear stress in 

a radial flow chamber is given by (Goldstein, DiMilla 1998),  
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where Q represents the flow rate and h is the chamber height,  is the mass density of the 

fluid, r  is the radial distance from the center of the chamber and  is the fluid viscosity. 

The first term in the expression refers to viscous wall shear stress and the second term is 

the correction factor to account for the inertial effects due to fluid flow and is desirable to 

maintain the inertial term to be less than 5% of the viscous term. This configuration of 

radial flow chamber was extensively used in the adhesion studies of mammalian cells to 

investigate the effect of fibronectin concentration on cell adhesion strength (Goldstein, 

DiMilla 1997, Goldstein, DiMilla 2002). 

2.5.2.3 Parallel Plate Flow Chamber 

 The advantage of the parallel plate flow chamber is that it can be mounted on a 

microscope for live observations of cell detachment. As for the configurations, many 

variations exist such as two glass plates sealed with a rubber gasket in between or a 

PDMS channel sealed to a glass slide. For a given flow rate, the shear stress is constant 

along the length of the channel beyond the entrance length, but can vary across the width 

of the channel depending on the channel dimensions. However, variation across the width 

of the channel is lowered using geometrical aspect ratio of (w>20h) (Truskey, Pirone 

1990). The wall shear stress is given by, 

 
2

6

wh

Q   (2.8)

where Q represents the flow rate and h is the chamber height, w is the chamber width and 

 is the fluid viscosity ( h << w ). This configuration was used to study adhesion strength 
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of cells adhered to dentin (Messer et al. 2006) and cartilage (Schinagl et al. 1999) and 

also to characterize human skin fibroblasts adhered to glass (van Kooten et al. 1992). 

2.5.3 Micromanipulation 

 Micromanipulation involves single cell studies as opposed to population based 

studies of the centrifugation or hydrodynamic shear assays. Two of the most common 

micromanipulation techniques are cytodetachment and micropipette aspiration. In 

cytodetachment, the force is measured by the elastic deformation of a probe using an 

instrument such as an Atomic Force Microscope. While in micropipette aspiration, the 

force is determined by the aspiration pressure. A number of other techniques were also 

used including microplates, (Thoumine, Meister 2000)optical tweezers (Thoumine et al. 

2000) and magnetic tweezers (Walter et al. 2006) to observed single cell mechanics. 

2.6 Selective Protein Patterning to Manipulate Cell Adhesive Interface 

 Successful manipulations of cell-substrate adhesive interactions require precise 

geometries of adhesive protein coated areas on the underlying surface. Numerous 

approaches have been demonstrated to pattern substrates with proteins. Microcontact 

printing (μCP) has emerged to be the most versatile technique to pattern substrate with 

various geometries in the sub-cellular scales. This method provides a substrate which has 

controllable adhesive area, thereby limiting the extent of spreading which is possible for a 

cell.  Thus a cell can adhere for long periods and assemble FAs, while still maintaining a 

defined contact area and a nearly spherical morphology if the adhesive area is smaller 

than a cell.  Therefore, the hydrodynamic force on each cell, applied in a detachment-type 

assay, is fairly uniform and can easily be computed.  Surface micropatterning methods 

also allow unlimited possibilities in configurations for manipulating cell adhesive 
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interfaces. By improving this technique to pattern cells over large areas with a high 

efficiency, large numbers of cells can be examined in each experiment and robust 

measurements taken for statistical analysis. 

2.6.1 Microcontact Printing 

 This technique was originally designed to pattern surfaces with well defined 

geometries and chemistries on substrates by forming self-assembled monolayer (SAM) 

domains.  The patterns are generated through the transfer of ‘ink’ molecules (usually 

alkanethiols or alkyl silanes) by conformal contact between the target substrate and 

micron sized features protruding from a polymer stamp (Kumar, Whitesides 1993, 

Delamarche et al. 1998, Balmer et al. 2005, Schmid, Michel 2000, Xia, Whitesides 

1997). As the demands in biological realms have surpassed the micron regime, research 

into μCP has led to the development of a variety of stamp materials, inks and fabrication 

techniques to permit submicron patterning with explicit replication accuracies (Perl, 

Reinhoudt & Huskens 2009). Owing to its simplicity, μCP has since been refined and 

applied to patterning proteins, cells and DNA (Ruiz, Chen 2007, Chen et al. 1998, Guan, 

Lee 2005). Since patterning substrates involves conformal contact of the protruding 

features of the stamp to the substrate, stamp stability often dictates the pattern resolution 

that can be achieved (Bietsch, Michel 2000, Hui et al. 2002, Sharp et al. 2004, Zhou et al. 

2005, Huang et al. 2005, Decre et al. 2005). Most variations have used 

polydimethylsiloxane (PDMS) as the stamp material and have been limited to 

reproducing feature sizes usually larger than 1 µm (Whitesides et al. 2001). Nevertheless, 

specific applications such as fabrication of spatially directed nanowires (Hsu et al. 2005) 

and selective protein patterning to regulate cell-substrate interactions while avoiding cell-
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cell contact (Gallant, Michael & Garcia 2005, Gallant et al. 2002, Balaban et al. 2001a, 

Kane et al. 1999) require complex geometries of small (micron or submicron) and 

sparsely patterned features on the substrate.  In these situations, stamps with extremely 

low fill factors (characterized by less than 1%) are required if μCP is to be used. 

Moreover, extremely low fill factors would enable μCP to be employed in the systematic 

study of individual adhesion complex assembly with respect to the effect of size, density 

and position of adhesive domains in cell-substrate interactions (Massia, Hubbell 1991, 

Cavalcanti-Adam et al. 2006, Cavalcanti-Adam et al. 2007). Hence advancements in μCP 

under these scenarios will be critical to its applicability in exploring complex biological 

phenomena. 

2.6.2 Patterning Proteins with Self Assembled Monolayers 

 Engineering surface chemistry on the substrates is a key to manipulate cell 

adhesive interfaces. This is achieved by using self assembled monolayer domains. Protein 

adherent SAM domains surrounded by protein resistant non-fouling background with a 

different SAM provides for selective domains to which the cells can adhere (Chen et al. 

2003, Chen et al. 1998, Kane et al. 1999, Chen et al. 1997). In most studies, a methyl-

terminated or –COOH terminated alkanethiol is used in microcontact printing to form the 

protein adsorbing domains. The background is subsequently filled with PEG terminated 

alkanethiol which resists protein adsorption (Keselowsky, Collard & Garcia 2004). The 

adsorbed proteins (specifically fibronectin) maintain their activity as observed by the 

immunostaining with site specific antibody. Thus a cell can adhere for long periods and 

assemble focal adhesions, while still maintaining a defined contact area. 
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Fig 2.1 Diagram of a focal adhesion showing the clustering of integrins binding to 

surface-adsorbed FN. 
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Fig 2.2 Spinning disk and shear stress profile. (a) Spinning disk device; shear stress 

varies linearly with radial position. (b) A typical profile of the adherent fraction after 

shear stress is applied. 
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Fig 2.3 Macroscopic and microscopic model for adhesion strengthening. (a) Free body 

diagram of cell attaching to micropatterned substrate under shear flow. The contact area 

is discretized into adhesive patches, each producing an adhesive force (Fi). (b) Diagram 

for adhesive patch showing three representative states: uniformly distributed bonds, 

clustered bonds, and focal adhesion associated bonds.  The adhesive patch is located a 

distance d (units δ) from moment center (point C).  Applied membrane tension results in 

cell detachment by peeling of the leading edge of the cell.  Bonds in the contact area 

resist the applied force.(Gallant, Michael & Garcia 2005) 
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Chapter 3. Micropatterned Surfaces to Control Cell Adhesive Area and Cell 

Spreading Area 

3.1 Introduction 

 The biomechanical and biochemical cues triggered by the ECM architecture are 

critical to the regulation of cell adhesion that impacts various cellular functions such as 

spreading, migration, motility, proliferation, differentiation and apoptosis (Gallant, 

Michael & Garcia 2005, Ezzell et al. 1997, Ballestrem et al. 2000, Wang et al. 2002, 

Chen et al. 1997). Cell adhesion to ECM proteins such as fibronectin and laminin is 

primarily mediated by heterodimeric receptors that belong to the integrin family and is 

critical to cell survival and regulation of tissue development and function (Stupack, 

Cheresh 2002, Hynes 2002, Danen, Sonnenberg 2003, Berrier, Yamada 2007). These 

integrins cluster and trigger signaling events resulting in the recruitment of various 

structural proteins such as talin, vinculin and signaling proteins such as paxillin, zyxin to 

the adhesive sites to form focal adhesions (Geiger, Bershadsky 2001) which further 

enhance adhesion strength by coupling integrins to the cytoskeleton (Gallant, Michael & 

Garcia 2005, Ward, Hammer 1993) and further act as putative mechanotransducers to the 

cell (Wang, Butler & Ingber 1993, Balaban et al. 2001, Chen et al. 2003, Wozniak et al. 

2004, Rape, Guo & Wang 2011). Recent investigation into the nanoscale architecture 

throws light on the critical spacing between ligands necessary for focal adhesion 

formation and regulation of cell adhesion and spreading (Massia, Hubbell 1991, 

Cavalcanti-Adam et al. 2006, Cavalcanti-Adam et al. 2007, Selhuber-Unkel et al. 2010). 
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A similar kind of study investigated cell behavior on micropatterned substrates to 

understand the limits of ECM geometry on cell adhesion and spreading (Lehnert et al. 

2004).  

 Microcontact printing technique pioneered by Kumar and Whitesides (Kumar, 

Whitesides 1993) allowed for widespread usage of micropatterning for biological 

investigations. Owing to its simplicity, μCP has since been refined and applied as a 

biology tool to pattern proteins, cells and DNA (Ruiz, Chen 2007, Chen et al. 1998, 

Guan, Lee 2005). This technique was extensively applied in conjunction with a 

hydrodynamic shear assay to systematically study the contributions of adhesive area, 

integrin binding and focal adhesion assembly towards adhesion strength (Gallant, 

Michael & Garcia 2005, Gallant et al. 2002, Dumbauld et al. 2010). However, 

characterizing the specific contribution of the spatial organization of focal adhesions to 

cell adhesion strength independent of cell adhesive area remains elusive. In this study, 

micropatterned substrates were engineered with adhesive and non-adhesive domains to 

control cell shape and dissect the contributions of focal adhesion position independently 

of the total cell adhesive area towards adhesion strength (Fig 3.1). 

3.2 Experimental Section 

 Materials 

Human plasma fibronectin, Dulbecco’s phosphate-buffered saline (DPBS), 

AlexaFluor 488-conjugated secondary antibodies and AlexaFluor 546-conjugated 

secondary antibodies were purchased from Invitrogen. Chemical reagents, including 1-

hexadecanethiol [H3C(CH2)15SH] and tri(ethylene glycol)-terminated alkanethiol 
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[HO(CH2CH2O)3(CH2)11SH] and anti-fibronectin polyclonal and anti-vinculin antibodies 

were purchased from Sigma-Aldrich. 

 Elastomeric stamps 

Master templates of required patterns were fabricated on silicon wafers using 

standard photolithography techniques.  Briefly, positive photoresist (Shipley 1813) was 

spun onto a precleaned silicon wafer to a thickness of approximately 2 μm.  UV exposure 

of the resist was required to expose features of micron regime.  The exposed areas were 

developed leaving behind a template of recessed features.  Templates were then exposed 

to (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)-1-trichlorosilane (Sigma-Aldrich) in a 

dessicator under vacuum to prevent the polydimethylsiloxane (PDMS) elastomer from 

adhering to the exposed silicon.  The PDMS precursors and curing agent (Sylgard 184, 

Dow Corning Corporation, Midland, MI USA) were mixed in the recommended ratio 

(10:1), degassed under vacuum, poured over the template in a 100 mm diameter flat dish 

to a thickness of 5 mm, and cured at 65 °C for 2 h.  The cured PDMS stamp containing 

the desired features was then peeled from the template and cut into a 25 mm square. 

 Substrates  

Glass coverslips (25mm in diameter) were sonicated in 50% ethanol, dried under 

a stream of compressed N2 and then oxygen plasma cleaned for 5 min (PE50, Plasma 

Etch, Inc., Carson City, NV). These coverslips were sequentially coated with 10 nm of 

titanium and 20 nm of gold at a deposition rate of 0.5 Å/s in an electron beam evaporator. 

 Microcontact printing 

For microcontact printing (μCP), the flat back of the stamp was allowed to self 

seal to a glass slide to provide a rigid backing. The stamp was inked with 2 mM 1-
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hexadecanethiol (Sigma-Aldrich) and then gently blown dry with compressed N2. The 

stamp was gently placed on the substrate to ensure conformal contact of the features over 

the entire area of substrate.  The stamp was kept in contact for 10 s to produce an array of 

CH3-teminated monolayer islands, to which proteins readily adsorbed. The stamp was 

then carefully separated from the substrate with the help of tweezers. The patterned 

substrates were incubated in 2 mM ethanolic solution of tri(ethylene glycol)-terminated 

alkanethiol for 2 h to create a non-adhesive background around the CH3-terminated 

islands. The substrates were rinsed in 95% ethanol and gently dried under a stream of N2.  

 Protein patterning 

The substrates were incubated with fibronectin (20 μg/m in DPBS) (Invitrogen) 

for 30 min and then blocked with denatured (65oC, 2 h) 1% bovine serum albumin 

(Fisher Scientific, Fair Lawn, New Jersey) for 30 min to avoid non-specific protein 

adsorption. 

3.3 Results and Discussion 

 The feasibility of microcontact printing to be employed for the required patterns 

for our study was examined. The patterns chosen were (a) 6 μm diameter circular islands; 

(b) 10 μm outer, 8 μm inner diameter annular islands; (c) 10 μm diameter circular islands; 

(d) 25 μm outer, 23 μm inner diameter annular islands and (e) 25 μm diameter circular 

islands. The adhesive island geometries were chosen to delineate cell adhesive area from 

cell spreading area to understand the contribution of peripheral distribution of focal 

adhesions in regulating cell adhesion strength. The spacing between adhesive islands was 

maintained at 75 µm so that each cell is confined to only a single island. (Lehnert et al. 

2004)(Fig 3.2) However, due to small feature sizes and large spacing between features, 
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the stamp stability affected accurate replication of the smallest circular patterns (6 μm) 

and the more challenging 1µm critical dimensions of the annular patterns. It was 

hypothesized that stamp roof collapse prevented accurate pattern replication in 6 µm 

circular patterns, 10 µm annular patterns (Fig 3.3) and 25 µm annular patterns (data not 

shown).  

 The pattern sizes of 10 µm and 25 µm circular islands were accurately replicated 

and were followed by protein incubation. Fibronectin (20 µg/ml) in complete DPBS was 

allowed to incubate onto patterned surfaces of 10 µm and 25 µm adhesive islands for 30 

min followed by incubation with denatured 1% BSA for another 30 min. 

Immunofluorescence revealed protein tethering only to patterns (Fig 3.4). To achieve 

cellular patterning, fibronectin coated samples were seeded with cells at a density of 225 

cells/mm2. Phase contrast images taken after 16 hr revealed confinement of cell spreading 

to the adhesive islands and the spherical and hemispherical morphology of the cells on 10 

µm and 25 µm patterns respectively (Fig 3.5). 

 The radial intensity distribution in the green channel, representing vinculin (a 

focal adhesion protein) on a 10 µm island (Fig 3.6) was examined. Immunofluorescence 

staining of FA-localized vinculin in mechanically cleaved cells revealed that the cells 

adhered to micropatterned substrates assembled adhesive structures analogous to 

conventional focal adhesions in spread cells.  Several components typically associated 

with focal adhesions, including integrin 5β1, vinculin, talin, -actinin and paxillin, 

localized to and remained constrained to the micropatterned areas in earlier studies too 

(Gallant, Michael & Garcia 2005). The spatial segregation of focal adhesion proteins in 

islands with 10 m diameter was clearly visible (Fig 3.6b). Also the intensity plots for 
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vinculin show enhanced recruitment at the periphery of the 10 m adhesive island (Fig 

3.6c). Hence it can be concluded that there is an enhanced recruitment of FAs at the 

periphery reinforcing the adhesion strength model explained by Gallant et.al.(Gallant, 

Garcia 2007) This might be due to the distribution of mechanical load on the adhesive 

structures to allow for the maximum moment arm for which the peripheral structures are 

the best bet. Taken together, these results demonstrate that micropatterning approaches 

can be applied to engineer adhesive domains and focal adhesion assembly while 

controlling overall cell shape. 

3.4 Conclusions 

 Microcontact printing of alkanethiols on gold surface was applied to control cell 

adhesive area and cell spreading area but stamp stability posed a problem to accurately 

replicate some of the patterns required for the study. However for the patterns that could 

be replicated, recruitment of vinculin for cells adhered to the patterns revealed 

preferential peripheral organization. So next, the stamp stability in low fill factor stamps 

was investigated to achieve accurate pattern replication of all the geometries required to 

test our central hypothesis. 
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Fig 3.1 Schematic diagram delineating cell adhesive area and cell spreading area. 
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Fig 3.2 Schematic diagram of process flow for micropatterned substrate preparation.  
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Fig 3.3 Conventional μCP did not prevent roof collapse initiation and propagation for 

stamps with fill factor of 0.5% and structure aspect ratio of 35:1. Cyanide etching 

indicates areas of gold substrates that have been contacted by the inked stamp (dark 

regions indicate ink protected gold; bright regions indicate etched gold).  (a) 6 μm 

diameter circular islands (b) 10 μm outer, 8 μm inner diameter annular islands (bars=50 

μm). 

  

a b
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Fig 3.4 Immunostaining indicates fibronectin adsorbed only to micropatterned islands. (a) 

10 µm diameter circular islands; (b) 25 µm diameter circular islands (bars=50 µm). 

  

a b
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Fig 3.5 Representative phase contrast images of micropatterned cells. (a) 10 µm diameter 

circular islands; (b) 25 µm diameter circular islands. (Bars=25 µm). 
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Fig 3.6 Immunostained images of fibronectin and vinculin and intensity plots of vinculin 

on micropatterned cells. (a) Fibronectin on 10 m adhesive islands, and (b) vinculin 

recruitment on 10 m adhesive islands. (c) Intensity plot across two micropatterns circled 

in image (b) showing enhanced intensity at the periphery of the micropattern. (Bars=50 

µm). 
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Chapter 4. Microcontact Printing with Stamps Prone to Irreversible Roof Collapse 

4.1 Introduction 

Microcontact printing (μCP) is a technique originally designed to pattern surfaces 

with well defined geometries and chemistries on substrates by forming self-assembled 

monolayer (SAM) domains. The patterns are generated through the transfer of ‘ink’ 

molecules (usually alkanethiols or alkyl silanes) by conformal contact between micron 

sized features protruding from a polymer stamp and a target substrate (Kumar, 

Whitesides 1993, Delamarche et al. 1998, Balmer et al. 2005, Schmid, Michel 2000, Xia, 

Whitesides 1997). Due to the growing demand in the application of this technique and 

contradictory nature of the μCP process (stamp stability requires stiffer materials while 

conformality demands softer materials), it is imperative to understand the mechanisms 

underlying μCP to further the applicability of this technique. Extensive work on 

establishing the conditions for conformal contact, the mechanics underlying the stability 

of the stamps, and the limitations that are imposed by the stamp geometry has provided a 

basis for the stamp design criteria (Delamarche et al. 1997, Hui et al. 2002, Bietsch, 

Michel 2000). Further investigations into the mechanisms of stamp collapse have 

provided insights into the limit of the achievable structural aspect ratios (defined as the 

ratio of protruding structure separation to structure height) and stamp fill factors (defined 

as the ratio of the combined lateral area of the protruding features to the total stamp area) 

(Hui et al. 2002, Sharp et al. 2004, Zhou et al. 2005, Huang et al. 2005). As the 

technological demands have surpassed the micron regime, research into μCP has led to 
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the development of a variety of stamp materials, inks and fabrication techniques to permit 

submicron patterning with explicit replication accuracies (Perl, Reinhoudt & Huskens 

2009). 

Owing to its simplicity, μCP has since been refined and applied as a biology tool 

to pattern proteins, cells and DNA (Ruiz, Chen 2007, Chen et al. 1998, Guan, Lee 2005). 

However, complications arise in specific applications, such as the fabrication of spatially 

directed nanowire growth (Hsu et al. 2005) or selective protein patterning to regulate cell-

substrate interactions while avoiding cell-cell contact, (Gallant et al. 2002, Balaban et al. 

2001, Kane et al. 1999, Gallant, Michael & Garcia 2005) which require complex 

geometries of small (micron or submicron) and sparsely patterned features on the 

substrate. In these situations, stamps with extremely low fill factors (characterized by less 

than 1%) are required if μCP is to be used. Moreover, extremely low fill factors would 

enable μCP to be employed in the systematic study of individual adhesion complex 

assembly with respect to the effect of size, density and position of adhesive domains in 

cell-substrate interactions (Massia, Hubbell 1991, Cavalcanti-Adam et al. 2006, 

Cavalcanti-Adam et al. 2007). In low fill factor stamps, the feature aspect ratio (defined 

as the ratio of feature height to feature width) is maintained low (≤ 1) to avoid the 

additional stamp stability problems arising from lateral collapse and buckling (Hui et al. 

2002). This often leads to high structural aspect ratios (> 10:1) resulting in frequent 

confrontation with roof collapse characterized by the undesired contact of the recessed 

plane of the stamp to the substrate (Hui et al. 2002). Further complicating matters, the 

parasitic roof contact will propagate throughout the pattern zone in low fill factor stamps 

when the work of adhesion is higher than the elastic energy of the stamp features 
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(Bietsch, Michel 2000, Perl, Reinhoudt & Huskens 2009). After stamp removal, the 

resulting substrate does not replicate the original stamp features due to the additional ink 

transfer in unintended areas of stamp contact, thus affecting the yield of the effectively 

patterned substrates.  

Earlier investigations on stamp stability assumed roof collapse to occur 

homogeneously throughout the contact area under uniformly applied external pressure 

when the external pressure exceeds the collapse pressure (Hui et al. 2002, Bietsch, 

Michel 2000, Sharp et al. 2004, Zhou et al. 2005, Huang et al. 2005, Decre et al. 2005). 

Moreover, stamp stability criteria were established under the condition that the conformal 

contact between the stamp and the substrate is complete and restricted to the protruding 

plane of stamp features under the weight of the stamp (Hui et al. 2002, Bietsch, Michel 

2000, Sharp et al. 2004, Zhou et al. 2005, Huang et al. 2005, Decre et al. 2005). 

However, due to the large recessed areas in low fill factor stamps, roof collapse is non 

homogeneous and was predominantly observed to initiate at the periphery of the stamp-

substrate contact area and propagate even without the application of external pressure 

beyond that due to the self weight of the stamp. It was hypothesized that this peripheral 

roof collapse initiation and subsequent propagation in low fill factor stamps is due to the 

influence of conformal contact propagation on spatiotemporal stamp stability. This 

hypothesis is supported by previous observations that the weight of the stamp itself is not 

responsible for roof collapse under such scenarios (Zhou et al. 2005, Huang et al. 2005) 

and that conformal contact initiates at a point and then propagates until the conformal 

contact is complete (Greenwood, Williamson 1966). Although, effective techniques to 

avoid roof collapse in high aspect ratio structures have been described, the investigations 
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were limited to high fill factor stamps where the fill factors investigated were mostly 

above 10% (Bessueille et al. 2005, Pla-Roca et al. 2007). In such designs, the criterion for 

collapse propagation Г (ratio of stamp restoring forces to adhesive forces) is greater than 

1,(Bietsch, Michel 2000) thereby concealing the influence of spatiotemporal stamp 

stability on roof collapse propagation. Although it can be understood from stamp 

mechanics point of view that some kind of a collapse barrier or frame can be used to 

enhance stamp stability,(Bietsch, Michel 2000) a more comprehensive understanding of 

the stamp stability especially in low fill factor stamps would greatly expand the horizon 

of applicability of μCP.    

 In this study, the peripheral roof collapse phenomenon in low fill factor stamps 

was systematically investigated by dissecting it into two dynamic events: (a) roof 

collapse initiation and (b) roof collapse propagation. The occurrence of these two events 

in relation to the available theories unraveled the influence of conformal contact 

propagation on spatiotemporal stamp stability in stamp designs prone to irreversible roof 

collapse characterized by Г values lower than 1. To facilitate stamp stability and 

successful pattern transfer in the pattern zone, a simple modification to stamp design is 

proposed involving the fabrication of stamps with narrow peripheral high fill factor 

regions enclosing the low fill factor pattern zones. The limits of applicability of this 

modified μCP platform for large area patterning were explored relevant to the structural 

aspect ratios and low fill factors under extreme scenarios previously unsuited to 

patterning using conventional μCP. 
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4.2 Experimental Section 

 Elastomeric stamps 

 Master templates of required patterns were fabricated on silicon wafers using 

standard photolithography techniques (Gallant et al. 2002). Briefly, positive photoresist 

(Shipley 1813) was spun onto a precleaned silicon wafer to a thickness of approximately 

2 μm. Sequential UV exposure of the resist was required to produce features of two size 

scales (10-6 and 10-4 m) with a single development on the template. The wafer was 

subjected to a primary exposure through an optical mask containing the required low fill 

factor stamp features in the pattern zone followed by a secondary exposure through an 

optical mask containing high fill factor features in the narrow peripheral zone. A single 

development step was used to template wafers with dual scale features. The exposed 

areas were developed leaving behind a template of recessed features. Templates were 

then exposed to (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)-1-trichlorosilane in a dessicator 

under vacuum to prevent the polydimethylsiloxane (PDMS) elastomer from adhering to 

the exposed silicon. The PDMS precursor and curing agent (Sylgard 184, Dow Corning 

Corporation, Midland, MI USA) were mixed in the recommended ratio (10:1), degassed 

under vacuum, poured over the template in a 100 mm diameter flat dish to a thickness of 

5 mm, and cured at 65 °C for 2 h. The cured PDMS stamp containing the desired features 

was then peeled from the template and cut into required size ensuring the high fill factor 

region was at the periphery where necessary. 
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 Substrates  

 Glass coverslips (25mm in diameter) were sonicated in 50% ethanol, dried under 

a stream of compressed N2 and then oxygen plasma cleaned for 5 min (PE50, Plasma 

Etch, Inc., Carson City, NV USA). These coverslips were sequentially coated with 10 nm 

of titanium and 20 nm of gold at a deposition rate of 0.5 Å/s in an electron beam 

evaporator. 

 Microcontact printing 

 For μCP, the stamp was inked with 2 mM 1-hexadecanethiol (Sigma-Aldrich, 

Inc., St. Louis, MO USA) and then gently blown dry with compressed N2. The flat back 

of the stamp was allowed to self seal to a glass slide to provide a rigid backing. The 

stamp was gently placed on the substrate to ensure conformal contact of the features over 

the entire area of substrate. The stamp was kept in contact for 10 s and then carefully 

separated from the substrate with the help of tweezers. Pattern fidelity over the entire 

surface was verified by bright field microscopy after etching the substrates in 0.1 mM 

KCN (pH 12.0). KCN is highly toxic and proper precautions should be taken. The gold 

not protected by ink transfer was etched away appearing as bright areas and the ink 

protected gold appeared darker. 

4.3 Results  

 Conventional μCP with low fill factor stamps results in roof collapse  

In an effort to address major challenges of μCP in a context relevant to most 

users, the entire investigation was conducted using conventional μCP where the stamp is 

manually brought into contact with the substrate by gently placing the stamp on the 

substrate to ensure that excess pressure is avoided. In this study, the feature geometries 
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and distributions were chosen to investigate the mechanisms of roof collapse independent 

from other stamp instabilities such as lateral collapse or buckling. In fact, the feature 

aspect ratio (defined as the ratio of feature height to feature width) is maintained 

sufficiently low to avoid the stamp stability problems arising from lateral collapse and 

buckling (Hui et al. 2002). The first features investigated were 6 μm diameter circular 

posts with a height of 2 μm spaced by 75 μm. The resulting effective fill factor was 0.5% 

with a structural aspect ratio of 35:1 and feature aspect ratio of 1:3. This configuration 

was selected for investigation due to its relevance to recent studies employing μCP such 

as to obtain selective biopatterning of small and sparsely spaced features on substrates to 

analyze cell-substrate interactions (Gallant, Michael & Garcia 2005, Dumbauld et al. 

2010). μCP was carried out carefully with no external pressure as previously described. 

The peripheral roof collapse initiation and subsequent propagation was clearly visible 

spontaneously upon stamp contact as can be discerned by loss of characteristic 

interference fringes. The resulting substrate was etched and imaged to evaluate pattern 

fidelity. The representative images (Fig 4.1) show roof contact at unintended regions and 

was observed throughout the pattern zone indicating roof collapse over the entire area (~5 

cm2). The observed roof collapse was not specific to the shape of the feature as similar 

results were observed for other geometries (squares and rectangles) with similar fill 

factors and aspect ratios (Fig 4.1). A thin bright region around the post pattern on the 

substrate is the residual non-contact area of the roof and is a characteristic of roof 

collapse. 

 To understand the observed roof collapse phenomenon, it was subdivided into two 

dynamic events for investigation: (a) roof collapse initiation and (b) roof collapse 
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propagation. The next objective was to explain the occurrence of these two events in the 

context of available theoretical mechanisms for roof collapse. 

 Theoretical analyses of roof collapse initiation does not completely explain the 

observed roof collapse in low fill factor stamps 

 Previous theories on stamp stability were developed based on uniform distribution 

of pressure on the entire stamp features. Another inherent assumption was that the 

conformal contact propagation between the stamp features and the substrate is complete 

and that the roof collapse occurs when the external pressure exceeds the collapse pressure 

at which the recessed plane contacts the substrate. To understand the observed roof 

collapse initiation in light of the previous theories, first the magnitude of the collapse 

pressure was compared to the applied pressure (self weight of the stamp along with rigid 

glass backing).  

 Previous investigation by Bietsch et al., established that the order of magnitude of 

the collapse pressure is similar for post configurations and line configurations of the same 

width and fill factor (Bietsch, Michel 2000). Thus, theories developed for line and space 

gratings were used to analyze the collapse pressure in the present stamps. For the same 

width, height and fill factor as the posts, the lines of width 2 a  and height h  should be 

spaced by 2 w  given by,  

 

fillfactor

a
aw  )(  (4.1)

For the same fill factor as the posts (0.005), the lines of width 2 a =6 μm should be 

spaced by 2 w =1194 μm. The collapse pressure for such line configuration (assuming 
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ah  ) was predicted using the analytical expression developed by Hui et al., for shallow 

stamp structures given by 
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where   is collapse pressure, *E  is defined as  21 
E

 with E  as Young’s modulus (1 

Mpa) and   is Poisson’s ratio (0.33), 2w as the spacing between the line features, and 2 a  

as the width of the feature (Hui et al. 2002). By rearranging the expression, we obtain 

given by, 
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Hence, the expression for   becomes, 
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Evaluating   for 2a=6 μm, h=2 μm and fill factor =0.005 with 2 w =1194 μm , 

resulted in 1 kPa which was compared to the pressure (0.2 kPa) exerted by the stamp with 

rigid glass backing. Since it was established that the order of magnitude of the collapse 

pressure is similar for post configurations and line configurations of the same width and 

fill factor, (Bietsch, Michel 2000) it is reasonable to consider the collapse pressure to be 1 

kPa for the 6 μm post configuration. It should be noted that the predicted collapse 

pressure is accurate to the order of magnitude and not the absolute collapse pressure. In 
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fact, it was established that the value of collapse pressure in the post geometries is 5-50% 

greater than for the line configurations with same width and fill factor, (Bietsch, Michel 

2000) meaning that the range of collapse pressures can be between 1 kPa and 1.5 kPa. 

Nevertheless, these collapse pressure values are larger than the pressure (0.2 kPa) exerted 

by the stamp due to self weight implying that roof collapse should not occur due to 

uniform pressure exerted by the weight of the stamp on the stamp features, which is in 

contradiction of the observed results (Fig 4.1).  

 To further examine the axial deformation of posts due to self weight of the stamp 

and its impact on roof collapse, it was hypothesized that gravity alone is not responsible 

for the observed roof collapse. The hypothesis is backed by previous analyses showing 

that self weight of the stamp is not responsible for roof collapse (Zhou et al. 2005, Huang 

et al. 2005). To test the hypothesis, the axial compression of each feature due to gravity 

when the weight of the stamp system is exerted on all the features uniformly was 

evaluated. The stamp along with the glass backing weighed 10g acting over 490 mm2 

(area of the substrate) resulting in a pressure ( extp ) of 0.2 kPa. postA  was defined as the 

area of the post and the spacing between them as s . Based on the fill factor, this pressure 

is amplified in the posts ( localp ) by the inverse ratio of the fill factor given by 
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 Evaluation of the local pressure resulted in 40.1 kPa on each post. Assuming 

elastic deformation and following Hooke’s law, further evaluation of the axial 

compression of each post due to this local pressure is given by 
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E
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and yielded 80 nm which is approximately only 4% of the feature height. This value is 

consistent with previously reported value for axial compression under gravity (Zhou et al. 

2005, Huang et al. 2005) confirming that gravity alone could not be responsible for the 

observed roof collapse. To complement this analysis, μCP was carried out by placing the 

substrate on the stamp and the collapse again initiates only under the weight of the glass 

coverslip. Numerical calculations indicate that for a glass coverslip weighing 0.2 g exerts 

a uniform pressure of 4.1 Pa resulting in a local pressure of 0.82 kPa on a post. Due to 

this local pressure, the deformation of stamp features is evaluated to be 1.6 nm which is 

approximately only 0.08% of the feature height. It is to be noted that in this analysis, 

deformation of the recessed plane mediated by the feature deformation wasn’t considered 

for simplifying the analysis. These results support the hypothesis that gravity alone could 

not be responsible for the observed roof collapse as the axial deformations of the features 

are well below the feature height under investigation (2 μm). 

 Theoretical prediction of roof collapse propagation agrees well with 

experimental observations in low fill factor stamps 

 To predict the collapse propagation condition for the current post configuration (6 

μm diameter circular posts with a height of 2 μm spaced by s =75 μm), the formulation 

developed by Bietsch et al., was employed which compares the restoring force of the 

stamp at collapse pressure to surface adhesion forces during roof collapse (Bietsch, 

Michel 2000) given by, 
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For all the values of  >1, the roof collapse is reversible upon release of the 

external pressure, whereas for   values <1, the roof collapse is irreversible implying that 

the roof of the stamp does not retract back even if the external pressure is released. 

Taking the value of work of adhesion W =0.5 J/m2 from previously reported studies 

(Bietsch, Michel 2000) and the spacing between the 6 μm diameter circular posts 

investigated in this study ( s =75 μm), resulted in a   value of 0.05 which indicates 

irreversible collapse. In other words, the adhesive forces are much greater than the 

restoring forces in the stamp so that when roof collapse initiates at a certain point, it 

propagates throughout the pattern zone. This prediction agrees well with the observed 

results (Fig 4.1) that once roof collapse initiated, it propagated throughout the pattern 

zone even without any additional external pressure.  

 Spatiotemporal stamp instability in low fill factor stamps 

 For low fill factor stamps, the prevailing theory predicted the experimentally 

observed roof collapse propagation, but it couldn’t completely explain the initiation of 

roof collapse. The existing analyses of roof collapse initiation were developed under the 

condition that the conformal contact between the stamp and the substrate is restricted to 

the protruding plane of stamp features under the weight of the stamp. Moreover, these 

analyses assume that the external pressure applied is uniformly distributed on all the 

stamp features. However, it was observed that in low fill factor stamps, roof collapse 

initiates even when the external pressure due to the weight of the stamp (0.2 kPa) is lower 

than the predicted collapse pressure (1 kPa). Taken together, it can be inferred from this 
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analysis that stamp stability is compromised even before the conformal contact between 

the stamp features and the substrate is complete. Thus, it was hypothesized that the nature 

of conformal contact induces spatiotemporal stamp instability in low fill factor stamps 

implying that the initial stamp-substrate contact is not restricted to the protruding plane of 

features. The hypothesis is partially supported by the previous analysis of Greenwood et 

al., that demonstrated conformal contact between two surfaces initially occurs at a point 

(Greenwood, Williamson 1966) and then propagates either due to externally applied 

pressure or due to the work of adhesion between the two surfaces (Bietsch, Michel 2000). 

On a macro scale, conformal contact between the stamp and the substrate (glass or gold 

coated glass) can be interpreted as an initial contact point that occurs in a particular 

region and then propagates as a contact front until the entire stamp achieves complete 

conformal contact. Ideally, the conformal contact should be restricted to the protruding 

plane of features for accurate pattern replication and stamp stability. However in low fill 

factor stamps, the stamp is destabilized which initiates local roof collapse and progresses 

to complete roof collapse (Fig 4.2). 

 This type of roof collapse initiation and propagation was not observed in previous 

investigations with higher fill factor stamps ( >1) where the roof collapse was 

homogeneous and was reported to occur only when uniformly applied external pressure 

exceeded the collapse pressure. To determine if the conformal contact of the protruding 

plane of features and roof collapse propagation in low fill factor stamps are two coupled 

events, μCP was carried out and the stamp (consisting of 6 μm diameter circular posts 

with a height of 2 μm spaced by 75 μm) was separated from the substrate before the roof 

collapse propagation was complete throughout the pattern zone. At the transition zone 
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where the roof collapse propagation was intentionally halted, the etched substrate (Fig 

4.3) reveals (i) a distinct zone of roof collapse (zone 1); (ii) a zone of partial feature 

contact (zone 2) and (iii) a zone of no feature contact (zone 3). 

 This implies that roof collapse propagation and conformal contact front 

propagation are two spatiotemporally synchronized events in low fill factor stamps. It can 

be clearly observed that conformal contact of the protruding plane of features precedes 

the conformal contact of the recessed plane. Moreover, it was also observed that the 

conformal contact between a flat PDMS stamp and a gold substrate proceeded in a 

process similar to the roof collapse in low fill factor stamps - both initiated at the 

periphery of the stamp-substrate contact area. It was deduced that this peripheral 

initiation is due to the inherent parallelism error present between the stamp and the 

substrate during initial contact due to manual μCP. Hence the next investigation was on 

the peripheral stamp stability against roof collapse during conformal contact propagation 

in low fill factor stamps. 

 Non-uniform pressure distribution during conformal contact propagation 

strongly modulates peripheral stamp stability in low fill factor stamps  

 It has been theoretically established and experimentally observed (Bietsch, Michel 

2000) that the conformal contact between the stamp features and the substrate is not 

homogeneous throughout the stamp. Rather, it initiates on a small subset of features upon 

initial contact and then propagates in the protruding plane for complete conformal contact 

of the entire stamp features (Fig 4.4).  

 Assuming that the initial contact occurs on protruding features, we hypothesized 

that the non-uniform pressure distribution (wherein the total stamp load is concentrated 
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on fewer features as the magnitude of the parallelism error increases) during conformal 

contact regulates peripheral stamp stability. Since this peripheral roof collapse 

phenomenon has not been previously reported in higher fill factor stamps, the influence 

of non-uniform pressure distribution was examined on the axial deformation of features 

in the area of initial contact (Fig 4.5). A simple one-dimensional analysis of the axial 

deformation of the features was performed as a function of the percentage of features 

loaded during initial contact (using Eqs (4.5) and (4.6)). Under these conditions, axial 

deformation is strongly dependent on the stamp fill factor for uniformly distributed stamp 

features. Since fill factors can be increased by either increasing the feature size with 

constant spacing between features (Fig 4.5a) or by decreasing the spacing between the 

features with constant feature size (Fig 4.5b), a separate analysis was conducted for each 

scenario.   

 Although, precise evaluation of the conditions for roof collapse in post geometries 

requires complex numerical analysis under the conditions of a dynamic non-uniform 

pressure distribution on the features in contact, this simple analysis provides sufficient 

information to fairly predict the behavior of the stamp under such conditions. It can be 

deduced from this simulation that as the fill factor of the stamp decreases, the effect of 

initial contact area (% of features in contact) greatly affects the axial deformation of the 

features thereby influencing the peripheral stamp stability. For higher fill factor stamps 

(>5%), the axial deformation of stamp features are less than 10% even when the stamp 

load is exerted on only 5% of the total features (due to large parallelism errors). Hence 

this peripheral stamp stability problem is seldom encountered in higher fill factor stamps 

and successful patterning is realized in most cases (Fig 4.6a). It is to be noted that roof 
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collapse was still observed occasionally in these high fill factor stamps due to a different 

mechanism which is explained in the next section. In stamps with fill factors close to 1%, 

successful patterning was realized only when extreme care was taken to avoid the non-

uniform pressure distribution. Since μCP was done manually, this turned out to be a 

probabilistic event that greatly reduced the yield of faithfully reproduced patterned 

substrates (Fig 4.6b,c). However, in lower fill factor stamps (<1%), the effect is more 

pronounced due to the fact that, comparatively, the stamp load is exerted on a markedly 

smaller total feature area, thereby greatly influencing the axial deformation and hence the 

peripheral stamp stability. This simulation indicates that in stamps with fill factor of 

0.5%, 50% of the features need to contact the substrate initially to have an axial 

deformation lower than 10% implying an almost negligible tolerance for non-uniform 

pressure distribution for a stamp with this design. This was observed experimentally 

during μCP of stamps with fill factors of 0.5% wherein the peripheral roof collapse was 

observed 100% of the time (Fig 4.1). These observations were consistently observed for a 

large number of samples over a period of several months, removing any possible 

ambiguities arising from manual (conventional) μCP of the stamps onto the substrates. 

 Large peripheral recessed areas exacerbate roof collapse through a different 

mechanism – erroneous roof contact with the substrate 

 Since the ratio of restoring forces in the stamp to surface adhesive forces is much 

lower in low fill factor stamps with high structural aspect ratios ( <1), any contact 

between the substrate and the roof of the stamp would spontaneously cause parasitic roof 

collapse propagation. It was hypothesized that due to the presence of large exposed 

recessed regions at the periphery in the stamp design (a common characteristic feature of 
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the low fill factor stamp), erroneous roof contact with the substrate influences peripheral 

stamp stability by initiating roof collapse and subsequent propagation (Fig 4.7). This 

condition may be product of the stamp fabrication or a requirement of the pattern design. 

 To examine the roof collapse initiation mechanism due to erroneous roof contact 

with the substrate, a stamp design was chosen which consists of a square pattern zone of 

9mm2. The square pattern zone consisted of circular posts of 20 μm diameter, height of 2 

μm with a spacing of 75 μm resulting in a fill factor of 5.5% ( <1). It is noted that this 

stamp design is highly tolerant of non uniform pressures and typically collapse does not 

initiate as indicated (Figs 4.5, 4.6). The stamp was carefully fabricated so that it consisted 

of uniformly distributed features from end to end without overhanging recessed regions 

in order to avoid the erroneous contact of the roof to the substrate (Fig 4.4). μCP was 

carried out and the patterns were successfully transferred to the substrate as observed in 

the images of the resulting etched substrates (Fig 4.8) 

 As a control, another stamp was fabricated with the same features except an 

extended roof (50 μm overhang) was introduced at the periphery during the fabrication 

process (Fig 4.7). Due to this change in the design, the fill factor of the stamp reduced 

from 5.5% to 5.2% which is only a reduction in fill factor by 0.3% and still well above 

unity. μCP was carried out and images of the etched substrates demonstrated the 

consistent roof collapse initiation at the edge/periphery and subsequent propagation 

throughout the pattern zone (Fig 4.9) due to erroneous roof contact with the substrate. 

These results indicate that intricate details in the stamp design and fabrication 

dramatically change the fate of stamp stability in stamps designs with  <1. 
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 Limitations imposed by spatiotemporal stamp stability in conventional μCP 

with low fill factor stamps  

 Typically, the pattern design (feature geometry, spacing, and uniform or non-

uniform feature distribution) is fixed by the constraints of specific research application 

and should not be limited by the technique. Thus, a contradiction emerged in the utility of 

μCP for future applications in biology and nanotechnology. These results underscore that 

understanding the dynamic conditions during initial contact is critical to pattern 

substrates with stamp designs that involve non-uniformly distributed stamp features or 

clustered pattern zones separated by large periods. Considering one such scenario, 

repeated square pattern zones similar to the previous design (circular posts of 20 μm 

diameter, height of 2 μm with a spacing of 75 μm resulting in a fill factor of 5.5% for 

each square pattern zone) were fabricated onto a single stamp with a period of 1 mm in 

between the square pattern zones. The total stamp area was approximately 5 cm2 (Fig 

4.10) with a global fill factor of approximately 3%.  

 μCP was carried out and spontaneous roof collapse was observed in the areas 

between the discrete clusters of pattern features at the periphery of the stamp upon 

contact. The collapse quickly propagated throughout the entire stamp leaving a small 

residual moat in each of the discrete clusters as explained elsewhere (Sharp et al. 2004). 

The typical directions of the observed roof collapse propagation are depicted in the 

schematic representation of the stamp-substrate contact area (Fig 4.11). Images of the 

etched substrate reveal areas of roof collapse (Fig 4.11). Complete roof collapse was 

observed on all of the 10 samples used in the study.  Each time the roof collapse was 

observed to originate from the periphery of the stamp-substrate contact area and, more 
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importantly, in between the areas of square pattern zones. The observed roof collapse in 

this case is likely unavoidable due to the combined effect of the non-uniform pressure 

distribution and the large exposed peripheral recessed regions, thereby ensuring the 

collapse. 

 Taken together, these results suggest that in conventional μCP (a) the parallelism 

error (if present) directs the periphery of the stamp to contact the substrate first; (b) the 

areas directly vulnerable to roof collapse are the exposed regions of recessed plane at the 

periphery of the stamp; and (c) non-uniform pressure distribution influences the 

peripheral stamp stability especially in low fill factor stamps. Therefore, rather than 

stamp stability criteria dictating the stamp design, understanding the process of conformal 

contact and its influence on peripheral stamp stability allows for more rigorous usage of 

this technique provided a novel way to enhance peripheral stamp stability is explored. 

Hence the next focus was on achieving peripheral stamp stability by means that is not 

unique to any particular stamp design but rather be applicable to a variety of stamp 

designs irrespective of feature geometry, spacing, and uniform or non-uniform feature 

distribution. This more complete understanding of critical factors influencing stamp 

stability led to the design of stamps that can be successfully used in conventional μCP. 

This novel approach greatly expands the applicability of conventional μCP beyond the 

current limitations of patterning a uniform distribution of features with high fill factors. 

 A narrow peripheral high fill factor zone enclosing the desired pattern zone 

enhances peripheral stamp stability 

 It is evident from these results that if peripheral stamp stability can be enhanced, 

then as the conformal contact front proceeds from the periphery throughout the pattern 
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zone, the pressure distribution on the features becomes more uniform and the entire 

stamp is stabilized. Moreover, since the zones vulnerable to roof collapse were 

established as peripheral regions, we hypothesized that a narrow peripheral high fill 

factor zone surrounding the pattern zone would enhance peripheral stamp stability. In 

addition, it would also provide a barrier to the collapse propagation even under conditions 

when peripheral stamp stability outside the pattern zone is compromised (e.g., extended 

stamp roof). Numerous options for the narrow peripheral high fill factor region are 

possible including (a) a large number of features with reduced spacing between them, (b) 

large features with greater spacing between them, or (c) a combination of large features 

with minimal spacing. The criteria determining whether the peripheral high fill factor 

inhibits the collapse propagation into the pattern zone is dependent on the ratio of stamp 

restoring forces to local adhesive forces characterized by   values. Combinations 

wherein stamps with a desired pattern were fabricated were examined with additional 

circular posts with 500 μm diameter and height of 2 μm placed at radial peripheral 

positions with varied spacing and examined the peripheral stamp stability (data not 

shown). It was observed that peripheral fill factor of at least 68.8% was required to 

provide the necessary restoring force so as to inhibit the roof collapse propagation into 

the pattern zone. 

 To unify the approach, a continuous column enclosing the pattern zone was 

chosen to enhance peripheral stamp stability. Since a continuous column protects all the 

vulnerable zones at the periphery, it was expected to inhibit propagation of roof collapse 

into the enclosed pattern zone. Based on the results on peripheral circular columns, the 

stamp was fabricated with an annulus of 23 mm diameter (to match substrate dimension 
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of 25 mm) with a lateral thickness of 250 microns enclosing the pattern zone which 

consisted of features to be patterned over an area of 5 cm2. It should be noted that the 

height of the annulus and that of the features are equal to 2 μm. Patterning of substrates 

was carried out using the modified stamp and imaged for pattern fidelity after etching the 

substrates. Micrographs of the etched substrates indicate good pattern fidelity with no 

trace of roof collapse over the entire pattern zone (Fig 4.12). The next examination was 

on the influence of the dimensions of the annular column on pattern fidelity by 

fabricating a series of stamps containing annular columns of diminishing lateral thickness 

of 100 μm and 50 μm. No loss in the pattern fidelity or ability to inhibit collapse 

propagation was observed (Fig 4.12). It is to be noted that the continuous column 

completely inhibits the propagation of roof collapse into the pattern zone but does not 

always prevent the occurrence of roof collapse at the periphery in most situations due to 

large parallelism errors involved in conventional μCP. In order to understand the relation 

between column lateral dimensions towards ability to inhibit collapse propagation, 

analysis similar to Fig 4.5 was conducted wherein it was observed that the column lateral 

dimensions to support a roof span of 23 mm must be at least 50 μm. 

 Stamps fabricated with an embedded continuous peripheral column – an 

extended μCP platform  

 The applicability of this technique was further extended to stamps consisting of 

various geometries, corresponding fill factors and structural aspect ratios (Fig 4.13). 

Images of the etched substrates show faithful pattern replication for stamp feature 

geometries approaching a critical dimension of 1 micron and fill factors down to 0.28% 

with structure aspect ratios of 50:1 (annulus pattern with a spacing of 100 μm) (Fig 
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4.13d). Pattern transfer was also tested for a composite stamp design consisting of 

varying feature geometries and distribution (Fig 4.13e). 

 To generalize this platform beyond the feature geometries and fill factors 

investigated here and in order to test the limit of structural aspect ratio enabled by 

utilizing this embedded annular column, a stamp was fabricated exclusively consisting of 

an annulus of 23000 μm diameter with lateral width of 250 μm and height of 2 μm 

containing no features in the pattern zone. Considering the annulus as the only structure 

supporting the roof of the stamp, the structure aspect ratio of the stamp was 11500:1 with 

an effective fill factor in the pattern zone of zero. The inked stamp was carefully placed 

on the substrate and the characteristic interference patterns suggested that the roof did not 

contact the substrate in the enclosed pattern zone. The substrate was etched and imaged 

for any trace of roof collapse and it was observed that there was no contact of the roof to 

the substrate over the entire area enclosed by the annulus (Fig 4.14a). Similar 

experiments with an annulus of 23000 μm diameter with lateral thickness of 50 μm and 

height of 2 μm with no features in the pattern zone (structure aspect ratio of the stamp 

was 11500:1) also showed no trace of roof collapse over the entire area enclosed by the 

annulus (Fig 4.14b). 

 It can be deduced from these results that by inhibiting the peripheral roof collapse 

propagation by fabricating the stamp with an annulus around the pattern zone, the 

structure aspect ratios that could be achieved by conventional μCP can be increased from 

10:1 to at least 11500:1. This observation reinforces the fact that roof sagging between 

features spaced by a few tens or hundreds of microns - a typical spacing in low fill factor 

stamps - would not cause roof collapse due to only the combined weight of the stamp and 
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its rigid glass backing. Rather, peripheral roof collapse initiation is due to the parallelism 

error which gives rise to feature compression under non-uniform pressure distribution or 

erroneous exposed roof contact to the substrate, thus destabilizing the entire stamp. 

Although applications that require such extreme structural aspect ratios are not typical, 

the value of this platform lies in the flexibility it offers in choosing the pattern geometry, 

size and spacing while designing stamps. More importantly, this platform enables μCP to 

be employed to successfully pattern substrates with pre- engineered feature geometry, 

size and spacing, which is a typical research scenario, rather than the limitations of μCP 

dictating the pattern design. 

4.4 Discussion 

 Roof collapse in μCP is characterized by the unwanted contact between the 

recessed plane of the stamp and the substrate. To successfully pattern with low fill factor 

stamps, high structural and feature aspect ratios need to be employed to eliminate the 

other stamp instabilities – lateral collapse and buckling, resulting in increased 

susceptibility for roof collapse. It has been experimentally and theoretically verified that 

roof collapse occurs when the externally applied pressure exceeds the collapse pressure 

value for a certain pattern configuration (Hui et al. 2002, Bietsch, Michel 2000, Sharp et 

al. 2004, Zhou et al. 2005, Huang et al. 2005, Decre et al. 2005). The observations from 

this study along with established theory suggests that conformal contact between PDMS 

and glass (or gold coated glass) does not require externally applied pressure (Bietsch, 

Michel 2000). In fact, the high work of adhesion between PDMS and glass (or gold 

coated glass) is sufficient to propagate the conformal contact front (Bietsch, Michel 

2000). The results of this analysis also reinforce previous reports of Huang et. al that 
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gravity alone is not responsible for the roof collapse (Zhou et al. 2005, Huang et al. 

2005).  However, in partial contrast to their findings, it was found that roof sagging alone 

does not initiate roof collapse under the weight of the stamp (Fig 4.14). Taken together, 

these findings suggest that to obtain good pattern fidelity, the operating pressures needed 

to be much below the critical collapse pressures and that in most situations, stamping 

may be conducted with no additional external pressure. Nevertheless, in the stamp 

designs with small features and large recessed areas in between the features, roof collapse 

propagation was observed to be a frequently confronted issue in conventional μCP, 

limiting its usage in potential research areas spanning micro-nano fabrication, large area 

biopatterning and cell biology.  

 Primary observation in this study is the difference in the mode of roof collapse in 

low fill factor stamps. In higher fill factor stamps, roof collapse is homogeneous and 

caused by excessive uniform external pressure. However, in low fill factor stamps, roof 

collapse is non-homogeneous, occurs at pressures below the collapse pressure and 

initiates at the periphery of the stamp-substrate contact area. The typical pattern 

structures used in stamps are either categorized into uniform lines or discrete posts of 

specified dimension and spacing. The prevailing theories were developed to explain 

stamp stability conditions for uniformly distributed line configurations so that two 

dimensional analytical treatment was feasible (Hui et al. 2002, Zhou et al. 2005, Huang et 

al. 2005). For the more complicated three dimensional treatment of discrete posts, 

numerical simulations are used to predict the stamp stability conditions (Bietsch, Michel 

2000, Decre et al. 2005). However, in both cases, a few critical assumptions in the 
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existing theories must be noted to understand the peripheral roof collapse phenomenon 

observed in low fill factor stamps. 

 First, the previous stamp stability criteria against roof collapse were formulated 

under the condition that the conformal contact between the stamp and the substrate is 

complete and restricted to the protruding plane of features under the weight of the stamp 

(Hui et al. 2002, Bietsch, Michel 2000, Sharp et al. 2004, Zhou et al. 2005, Huang et al. 

2005, Decre et al. 2005). Thus the assumption that there is a uniform pressure distribution 

on the stamp features to establish stamp stability holds well. In this scenario, conformal 

contact of the protruding plane of stamp features to the substrate and roof collapse are 

two distinct events and are independent of each other at pressures relevant to that due to 

the weight of the stamp. However, results of the present study suggest that due to slight 

parallelism error between the stamp and substrate, the initial contact point would affect 

peripheral stamp stability and influence the propagation of conformality, especially in 

low fill factor stamps even without any external pressure other than the weight of the 

stamp. Our results also establish that in low fill factor stamps, conformal contact of the 

protruding plane of features and conformal contact of the recessed plane of the stamp 

(roof collapse) are two synchronized, events in contrast to the established theories on 

homogeneous roof collapse (Fig 4.3). These results agree well with the theory of 

conformal contact wherein the process of contact between two nominally flat surfaces 

occurs at a point of protrusion on microscopically rough substrates (Greenwood, 

Williamson 1966) and is followed by propagation of the contact front due to the work of 

adhesion or externally applied pressure (Bietsch, Michel 2000). This implies that the 
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stamp stability in low fill factor stamps is compromised even before the conformal 

contact between the protruding plane of stamp features and the substrate is complete. 

 Second, typical investigations to establish roof collapse conditions were carried 

out with high fill factor stamps (usually around 10%) (Hui et al. 2002, Bietsch, Michel 

2000, Sharp et al. 2004, Zhou et al. 2005, Huang et al. 2005, Decre et al. 2005). In such 

high fill factor stamps, even though a non-uniform pressure distribution may exist during 

initial contact, the pressure is distributed over a greater number of features per unit area 

or alternatively on larger features, thus concealing the effect of parallelism error on stamp 

stability. In contrast, for low fill factor stamps, this non-uniform pressure distribution on 

a small number of small and sparse features dramatically affects peripheral stamp 

stability (Fig 4.5). In fact, the effect of the non-uniform pressure distribution is slightly 

greater in situations when the fill factors are varied by varying the feature size while 

maintaining constant spacing (Fig 4.5a) as compared to increasing fill factors by varying 

spacing while maintaining constant feature size (Fig 4.5b). The influence of non-uniform 

pressure distribution is especially important in the stamp designs which are vulnerable to 

collapse propagation. An important characteristic of roof collapse is the collapse 

propagation criteria Γ formulated by Bietsch et. al. (Bietsch, Michel 2000). A reversible 

roof collapse is characterized by Γ values greater than 1. However in low fill factor 

stamps with post geometries, Γ values are typically lower than 1 implying irreversible 

(stable) roof collapse. It can be inferred from the formulation of Γ (Eq. (4.7)) for post 

geometries that for a given substrate and reversible collapse criterion (Γ>1), the collapse 

pressure is inversely proportional to the spacing between the features. Hence for lower 

fill factor stamps, the spacing is higher and therefore the collapse pressures are 
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significantly lower. Therefore, the operating pressures in low fill factor stamps are 

relatively low and on the order of magnitude of the pressure exerted by the weight of the 

stamp. Hence any non-uniformity in the pressure distribution during initial stamp-

substrate conformal contact amplifies the local pressure at that point of contact and 

spontaneously causes roof collapse and collapse propagation in low fill factor stamps 

even though no additional external pressure is applied. This is evident from the observed 

results in μCP 6 μm diameter circular posts with a height of 2 μm spaced by 75 μm (Fig 

4.1). 

 Third, stability against roof collapse is increasingly being gauged exclusively in 

terms of structural aspect ratios inherently assuming homogeneous roof collapse and 

complete conformal contact restricted to the protruding plane of features and the 

substrate. Various techniques such as submerged μCP, use of stiffer materials like 

PMMA to fabricate stamps, and composite stamps with various polymer layers or metal 

supports have been improvised to achieve pattern transfer using high structural aspect 

ratios (Bessueille et al. 2005, Pla-Roca et al. 2007). However, taking a closer look at fill 

factors in these investigations, they are well around 10% even for aspect ratios beyond 

100:1 hereto possibly concealing the effect of spatiotemporal stamp stability due to the 

nature of conformal contact. Taken together, spatiotemporal stamp stability due to 

conformal contact does not dramatically affect pattern replication of high aspect ratio 

stamps if the fill factors are maintained sufficiently high. However, in lower fill factor 

stamps, spatiotemporal stamp stability due to conformal contact magnifies the effect of 

any non-uniform pressure distribution and initiates roof collapse at the periphery. 

Subsequently for stamps designs with Γ<1, propagation of roof collapse ensues 
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threatening accurate pattern replication throughout the pattern zone. Hence it was 

deduced that in conventional μCP, the established stamp design criteria in terms of aspect 

ratios or fill factors do not individually govern stamp stability but complement each 

other.  

 Two distinct mechanisms were proposed to explain peripheral roof collapse and 

propagation observed in low fill factor stamps due to spatiotemporal stamp stability: (i) 

exaggerated axial deformation (compression) of stamp features due to the non-uniform 

pressure distribution during conformal contact propagation mediates recessed plane 

contact to the substrate; or (ii) erroneous contact of the substrate with exposed areas of 

the recessed plane at the periphery of the stamp-substrate contact area. By understanding 

the mechanisms of roof collapse initiation in low fill factor stamps, it is clear that by 

enhancing peripheral stamp stability, pattern transfer can be made possible. Therefore to 

facilitate μCP of low fill factor stamps and avoid parasitic roof collapse, stamps with two 

regions were fabricated - a narrow peripheral high fill factor region and an enclosed low 

fill factor pattern region. Since it was observed that the roof collapse always initiates at 

the periphery of the stamp due to contact mechanics, this narrow peripheral high fill 

factor region prevented the roof collapse propagation into the pattern zone even though 

peripheral stamp stability outside the pattern zone may be compromised in some 

scenarios. Absolute inhibition of collapse propagation into the pattern zone was achieved 

by fabricating the stamp with an annulus as the high fill factor region enclosing the 

pattern zone; however, other high fill factor regions can be effective (ensuring Γ>1 in the 

peripheral region) providing for alternative designs. This platform enabled successful 

patterning of stamps with fill factors in the pattern zone down to 0.28% which otherwise 
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cannot be achieved with conventional μCP. Moreover to generalize this platform beyond 

the stamp geometries and fill factors investigated in this study, stability of the roof at 

structural aspect ratio of 11500:1 and effective fill factor = 0 in the pattern zone was 

tested at a pressure from only the self weight of the stamp and its rigid glass backing. The 

roof of the stamp did not show collapse at this pressure (0.2 kPa) in the enclosed null fill 

factor region thus suggesting the successful replication of any features in the pattern zone 

irrespective of the geometry or fill factor. It is to be noted that the substrates used in this 

study were circular and hence an annulus was used as peripheral continuous column. In 

fact, the geometry of the peripheral column could vary according to the geometry of the 

substrate as long as the pattern zone is circumscribed. 

4.5 Conclusions 

 The stamp stability conditions in μCP, especially roof collapse, have been a 

subject of extensive research during the past decade. Numerous experimental, theoretical 

and simulation studies have been conducted to decipher the mechanisms underlying the 

frequently confronted roof collapse phenomenon. Although the usage of μCP is 

extensively employed in micro-nano fabrication and biology, nonetheless, it has limited 

application in specific studies involving patterning of small and sparse features (low fill 

factors) due to stamp instability. In this study, the mode of occurrence of roof collapse 

observed in low fill factor stamps (irreversible roof collapse) has been established to be 

different from the mode of roof collapse (reversible roof collapse) observed in high fill 

factor stamps. Spatiotemporal stamp stability was investigated in relation to conformal 

contact propagation. Due to inevitable parallelism error and non-uniform loading during 

conformal contact propagation, peripheral stamp stability was observed to be greatly 
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affected by fill factor and also by the stamp design and fabrication. A simple 

modification to stamp design involving two distinct zones is proposed to facilitate pattern 

transfer- a narrow high fill factor peripheral region enclosing a large area low fill factor 

pattern zone. This stamp design was successfully tested under aspect ratios and fill 

factors previously unsuitable for conventional μCP. A continuous column enclosing the 

pattern zone was demonstrated to inhibit the roof collapse propagation into the enclosed 

pattern zone and was generalized to various feature geometries and fill factors. This μCP 

platform permitted high-fidelity μCP using stamps with low to null effective fill factors 

in the pattern zone. While expensive alignment equipment and complex printing 

machines have been built for automated contact printing, most research facilities where 

μCP is to be employed use the conventional method of placing the stamp onto the 

substrate in the time frame of a few seconds for pattern transfer to obtain maximum 

flexibility in engineering pattern designs for high throughput studies. Hence this study 

was conducted to meet the requirements of such a scenario by employing conventional 

μCP. Such large surface area micro- and nano-patterning is expected to facilitate research 

in numerous fields including biomaterials and biotechnology where large populations of 

engineered individual biological components often need to be analyzed on a single 

substrate. 
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Fig 4.1 Conventional μCP did not prevent roof collapse initiation and propagation for 

stamps with fill factor of 0.5% and structure aspect ratio of 35:1. Cyanide etching 

indicates areas of gold substrates that have been contacted by the inked stamp (dark 

regions indicate ink protected gold; bright regions indicate etched gold). DIC images of 

stamps (top row) and bright field images of the corresponding etched substrates (bottom 

row) for (a) 6 μm diameter circular punches, (b) rectangular punches (8 μm x4 μm) and 

(c) pairs of square punches (4 μm x4 μm separated by 8 μm) are shown. The narrow 

bright regions surrounding the intended features (insets) indicate the residual non-contact 

area between the roof and the substrate (bar = 50 μm, inset bar = 5 μm). 
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Fig 4.2 Sequential images during μCP (0 to 1890 ms) show roof collapse propagation. 

The features come into the plane of focus once the roof is collapsed onto the glass 

substrate. The collapse propagation front is observed moving left to right in the field of 

view (bars = 100 μm). 
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Fig 4.3 Micrograph of the substrate, etched after the collapse propagation (moving left to 

right) was interrupted. Image indicates that conformal contact of the protruding plane of 

features precedes the conformal contact of the recessed plane. Stamp features are 6 μm 

diameter circular posts with a height of 2 μm spaced by 75 μm with a resulting fill factor 

of 0.5%. Cyanide etching reveals areas of gold substrates that have been contacted by the 

inked stamp (dark regions indicate ink protected gold; bright regions indicate etched 

gold) (bar = 100 μm, inset bar = 50 μm). 
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Fig 4.4 Schematic showing the initiation of conformal contact on peripheral protruding 

features. 

   



78 

 

 

Fig 4.5 Theoretically obtained values for % of axial compression of the stamp features vs 

% of stamp features in contact with the substrate during initial conformal contact for 

various fill factors. Graphs obtained by (a) varying feature size and maintaining constant 

spacing between the features; and (b) varying spacing between the features while 

maintaining constant feature size. 
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Fig 4.6 Representative images of substrates patterned using conventional μCP on gold 

substrates. Cyanide etching reveals areas of gold substrates that have been contacted by 

the inked stamp (dark regions indicate ink protected gold; bright regions indicate etched 

gold). (a) Image of the etched substrate showing successful pattern replication of stamp 

features with fill factor of 5.5% (Circular posts with 20 μm diameter, 75 μm spacing, and 

height of 2 μm). (b) Image of the etched substrate indicating roof collapse of stamp with 

fill factor of 1.5% (Circular posts with 10 μm diameter, 75 μm spacing, height of 2 μm). 

(c) Image of the etched substrate showing successful pattern replication of stamp features 

with fill factor of 1.5% when stamped with extreme care to reduce the impact of non-

uniform pressure distribution (Circular posts with 10 μm diameter, 75 μm spacing, height 

of 2 μm) (bars=100 μm). 
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Fig 4.7 Schematic showing the initiation of conformal contact at a point on the recessed 

plane due to erroneous roof contact. 
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Fig 4.8 Representative images of the substrates patterned successfully with a stamp 

fabricated with features from end to end. Cyanide etching reveals areas of gold substrates 

that have been contacted by the inked stamp (dark regions indicate ink protected gold; 

bright regions indicate etched gold). (a) Image of the etched substrate reproduced from a 

stamp consisting of circular posts with 20 μm diameter, 75 μm spacing and 2 μm feature 

height resulting in a fill factor of 5.5% (bar=100 μm) (b) Enlarged image of the same 

substrate at the edge of the pattern zone clearly indicating the reproduction of the edge 

that is coincident with protruding features (bar=50 μm). 
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Fig 4.9 Erroneous roof contact at the periphery due to an extended recessed plane 

resulted in spontaneous roof collapse initiation and propagation. Cyanide etching reveals 

areas of gold substrates that have been contacted by the inked stamp (dark regions 

indicate ink protected gold; bright regions indicate etched gold). (a) Representative image 

of an etched substrate showing roof contact (bar= 100 μm). (b) Enlarged image at the 

periphery of the stamp-substrate contact area [(1) Substrate region not contacted by the 

stamp; (2) region of extended recessed plane (roof) of the stamp contacted the substrate 

initiating roof collapse] (bar=50 μm). 
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Fig 4.10 Schematic representation of the stamp with discrete square pattern zones and 

enlarged image from one square pattern zone showing the stamp features. (Bar=100 μm) 
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Fig 4.11 Schematic of the stamp-substrate interface during conformal contact and 

representative microscopic image. The arrows indicating typical directions of roof 

collapse propagation. In fact, every peripheral recessed zone indicated by white area in 

the stamp is a vulnerable zone for roof collapse initiation and the recessed zones 

throughout the pattern area exacerbate the roof collapse propagation once initiated at the 

periphery. Enlarged image shows roof contact areas with the substrate. [Cyanide etching 

reveals areas of gold substrates that have been contacted by the inked stamp (dark regions 

indicate ink protected gold; bright regions indicate etched gold)] (bar=500 μm, inset 

bar=50 μm). 
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Fig 4.12 An annular support column prevented roof collapse propagation into the pattern 

zone. This enabled μCP of low fill factor stamps with high structural aspect ratios. 

Cyanide etching reveals areas of gold substrates that have been contacted by the inked 

stamp (dark regions indicate ink protected gold; bright regions indicate etched gold). The 

peripheral annular support columns with lateral widths of (a) 50 μm, (b) 100 μm, or (c) 

250 μm are identified with arrows (bar = 100 μm, inset bar = 50 μm). 
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Fig 4.13 Representative images of various feature geometries printed with the help of 

annular column. Cyanide etching reveals areas of gold substrates that have been 

contacted by stamps (dark regions indicate ink protected gold; bright regions indicate 

etched gold) consisting of (a) rectangular punches with structural aspect ratio of 35:1 and 

fill factor of 0.5% (8 μm x 4 μm, spacing L=75 μm); (b) clusters of 2 square punches 

separated by 8 μm with structural aspect ratio of 35:1 and fill factor of 0.5% (4 μm x4 

μm, spacing L=75 μm); (c) annular punches with structural aspect ratio of 35:1 and fill 

factor of 0.5% (10 μm outer, 8 μm inner diameters,  spacing L=75 μm); (d) annular 

punches with structural aspect ratio of 50:1 and fill factor of 0.28% (10 μm outer, 8 μm 

inner diameters,  spacing L=100 μm) (bar = 50 μm for a,b,c,d); and (e) a composite 

pattern design consisting of circular posts of 10 μm and 6 μm diameters separated by 25 

μm in the upper left quadrant (spacing L=75 μm) (inset 1), circular posts of 6 μm 

diameters in the lower left quadrant (spacing L=75 μm) (inset 2); no pattern features in 

the right half zone (inset 3) (bar=500 μm, inset bars=50 μm). 
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Fig 4.14 An annulus with structural aspect ratio of 11500:1. Lateral width of the column 

being (a) 250 μm or (b) 50 μm prevented roof collapse during μCP using a stamp devoid 

of punches in the pattern zone (effective fill factor = 0).  Cyanide etching reveals areas of 

gold substrates that have been contacted by the stamp (dark regions indicate ink protected 

gold; bright regions indicate etched gold) during μCP.  Images 1-8 demonstrate ink 

transfer via stamp contact at various positions on the substrate (bars = 500 μm, inset bar = 

50 μm). 
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Chapter 5. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion 

Distribution1 

5.1 Introduction 

 Cell adhesion to the extracellular matrix (ECM) plays a central role in mediating 

and regulating important cellular processes including but not limited to cell migration, 

bidirectional signaling during morphogenesis, tissue homeostasis and wound healing 

(Berrier, Yamada 2007). Adhesion of cells to ECM components, including fibronectin 

and laminin, is primarily mediated by transmembrane heterodimeric receptors that belong 

to the integrin family (Hynes 2002). Receptor mediated adhesion is a complex process 

involving integrin recruitment to the interface, activation, and mechanical coupling to 

extracellular ligands (Garcia, Huber & Boettiger 1998). These bound receptors rapidly 

interact with the actin cytoskeleton and cluster together to form focal adhesions (FA), 

large supramolecular complexes that contain structural proteins like talin, vinculin and α-

actinin and signaling proteins, such as FAK, Src and paxillin (Geiger et al. 2001).  

 FAs are reinforced and stabilized by actin-myosin contractility which enhances 

adhesion strength (Gallant, Michael & Garcia 2005, Dumbauld et al. 2010) and generates 

‘cellular traction’ that leads to cell spreading and cell migration by applying mechanical 

force on the underlying substrate (Fournier et al. 2010). Since the interactions between 

integrins and actin stress fibers are known to be mediated by FA assembly, cell shape 

                                                            
1 Parts of chapter 5 submitted to Biophysical Journal (under second review) as a research 
article. 
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(cell spreading) has been characterized as a main regulator for FA assembly by 

transmitting force from the ECM to cytoskeletal components (Chen et al. 1997, Chen et 

al. 1998, Chen et al. 2003). Moreover, extensive studies during the past decade indicate 

that mechanical tension generated within the cytoskeleton of living cells is a critical 

regulator of various cellular functions (Chicurel, Chen & Ingber 1998, Vogel, Sheetz 

2006). Further probing into the mechanical interactions between the cell and the substrate 

demonstrated the existence of an “inside-out” mechanism whereby changes in cell shape 

by global cell distortion increase the cytoskeletal tension and drive FA assembly (Chen et 

al. 2003). As a complimentary approach, changing the elasticity of the underlying 

substrate regulated the level of tension that a cell can exert on the substrate which, in 

turn, directly affects FA assembly (Balaban et al. 2001). 

 To elucidate the structure-function relationships between the adhesive 

components, micropatterned surfaces complemented by a hydrodynamic shear assay have 

been successfully employed by Gallant et al. (Gallant et al. 2002). That work on the 

spatiotemporal evolution of cell adhesion strength on micropatterned surfaces dissected 

the contributions of adhesive area, integrin binding and FA assembly towards cell 

adhesion strengthening (Gallant, Michael & Garcia 2005). It was established that steady 

state adhesion strength varied non-linearly with adhesive area and reached a plateau at an 

adhesive area of 78 µm2, beyond which further rises in adhesive area did not enhance the 

steady state adhesion strength (Gallant, Michael & Garcia 2005). This is in contrast to 

studies of cellular traction that demonstrated linear increases in mean traction with 

increases in cell spreading area (Wang et al. 2002, Reinhart-King, Dembo & Hammer 

2003). The nonlinearity in the adhesion strength was attributed to peripheral clustering of 
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integrins and subsequent formation of FAs (Gallant, Michael & Garcia 2005) in line with 

the previous analysis by Ward and Hammer (Ward, Hammer 1993). Mathematical 

models that simulate the clustering of integrins and subsequent formation of FAs have 

been developed to examine the non-linearity in the adhesion strength with respect to the 

adhesive area (Gallant, Andres J. Garcia 2007, Kong, Ji & Dai 2008). However, as the 

adhesive area is manipulated, the cell spreading area and the distribution of FAs is 

inherently affected. Hence, it is unclear whether the extent of cell spreading modulated 

by the spatial distribution of adhesive complexes or the total available adhesive area is 

responsible for the enhancement in the adhesion strength. Moreover, it is also unclear 

whether the set point area of ~78 µm2, beyond which there is no significant enhancement 

in the adhesion strength, is dictated by the total cell adhesive area or by the extent of cell 

spreading due to the peripheral distribution of adhesive complexes. 

 Based on the previous observations of the formation of distinct peripheral 

adhesion complexes (Gallant, Michael & Garcia 2005, Dumbauld et al. 2010), it was 

hypothesized that the spatial distribution of adhesive complexes plays a significant role in 

regulating the cell-substrate adhesion strength. To test this hypothesis, cell adhesive areas 

were engineered to delineate the cell spreading area from total cell adhesive area, thereby 

enabling us to modulate the position of FAs. In the design of the peripheral adhesion 

complexes, the ‘adhesive patch’ size was limited to 1 µm which is consistent with our 

earlier experimental and theoretical adhesion models. The usage of soft lithographic 

techniques and well defined surface chemistries to fabricate these adhesive surfaces 

enabled to control cell shape and adhesive complex position. Specifically, adhesive 

islands of constant outer diameter or constant area were engineered to dissect the 
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regulatory roles of total adhesive area and adhesive complex distribution (Fig 5.1). A 

hydrodynamic shear assay was used to quantify the adhesion strength of cells cultured on 

these micropatterned substrates coated with adhesive proteins, thus enabling us to analyze 

the effect of adhesive complex position on the overall adhesion strength independently of 

the total cell adhesive area. In light of the recent observations that cellular traction 

depends on FA assembly and cell spreading extent, an attempt has been made to contrast 

the functional role of these events in cell adhesion and traction. Such a mechanistic 

insight into the key biophysical regulators of cell adhesion would be indispensible in 

understanding mechanotransduction to manipulate cell adhesive interfaces on 

biomaterials which are critical to applications including tissue engineering and in vitro 

organ models. 

5.2 Experimental Section 

 Reagents 

Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA) supplemented 

with 10% new born calf serum (Invitrogen) and 1% penicillin-streptomycin (Invitrogen) 

was used as complete growth media (CGM). Cell culture reagents, including human 

plasma fibronectin and Dulbecco’s phosphate-buffered saline (DPBS), and AlexaFluor 

488-conjugated secondary antibodies, Hoechst-33242 and rhodamine-conjugated 

phalloidin were purchased from Invitrogen. Chemical reagents, including 1-

hexadecanethiol [H3C(CH2)15SH] and tri(ethylene glycol)-terminated alkanethiol 

[HO(CH2CH2O)3(CH2)11SH], and anti-fibronectin polyclonal and anti-vinculin antibodies 

were purchased from Sigma-Aldrich. 
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 Elastomeric stamps 

 Master templates of required patterns were fabricated on silicon wafers using 

standard photolithography techniques.  Briefly, positive photoresist (Shipley 1813) was 

spun onto a precleaned silicon wafer to a thickness of approximately 2 μm.  Sequential 

UV exposure of the resist was required to produce features of two size scales (10-6 and 

10-4 m) with a single development on the template.  The wafer was subjected to a primary 

exposure through an optical mask containing the required low fill factor stamp features in 

the pattern zone followed by a secondary exposure through an optical mask containing 

the annular peripheral zone.  This feature was necessary to prevent the parasitic roof 

collapse inherent to low fill factor, large structural aspect ratio stamp designs. The 

exposed areas were developed leaving behind a template of recessed features.  Templates 

were then exposed to (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)-1-trichlorosilane (Sigma-

Aldrich) in a dessicator under vacuum to prevent the polydimethylsiloxane (PDMS) 

elastomer from adhering to the exposed silicon.  The PDMS precursors and curing agent 

(Sylgard 184, Dow Corning Corporation, Midland, MI USA) were mixed in the 

recommended ratio (10:1), degassed under vacuum, poured over the template in a 100 

mm diameter flat dish to a thickness of 5 mm, and cured at 65 °C for 2 h.  The cured 

PDMS stamp containing the desired features was then peeled from the template and cut 

into a 25 mm square ensuring the annular region was at the periphery. 

 Substrates  

 Glass coverslips (25mm in diameter) were sonicated in 50% ethanol, dried under 

a stream of compressed N2 and then oxygen plasma cleaned for 5 min (PE50, Plasma 
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Etch, Inc., Carson City, NV). These coverslips were sequentially coated with 10 nm of 

titanium and 20 nm of gold at a deposition rate of 0.5 Å/s in an electron beam evaporator. 

 Microcontact printing 

For microcontact printing (μCP), the flat back of the stamp was allowed to self 

seal to a glass slide to provide a rigid backing. The stamp was inked with 2 mM 1-

hexadecanethiol (Sigma-Aldrich) and then gently blown dry with compressed N2. The 

stamp was gently placed on the substrate to ensure conformal contact of the features over 

the entire area of substrate.  The stamp was kept in contact for 10 s to produce an array of 

CH3-teminated monolayer islands, to which proteins readily adsorbed. The stamp was 

then carefully separated from the substrate with the help of tweezers. The patterned 

substrates were incubated in 2 mM ethanolic solution of tri(ethylene glycol)-terminated 

alkanethiol for 2 h to create a non-adhesive background around the CH3-terminated 

islands. The substrates were rinsed in 95% ethanol and gently dried under a stream of N2.  

 Protein patterning 

The substrates were incubated with fibronectin (20 μg/m in DPBS) (Invitrogen) 

for 30 min and then blocked with denatured (65 oC, 2 h) 1% bovine serum albumin 

(Fisher Scientific, Fair Lawn, New Jersey) for 30 min to avoid non-specific protein 

adsorption. 

 Cell patterning  

NIH3T3 fibroblasts (American Type Culture Collection, Manassas, VA) were 

cultured in CGM on tissue culture polystyrene. Cells were passaged every other day and 

used between passages of 5 and 20. For experiments, cells were enzymatically lifted from 
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the culture dish using trypsin/EDTA (Invitrogen) and then seeded onto these 

micropatterned substrates at a density of 225 cells/mm2 in CGM. 

 Cell adhesion assay 

Cell counts at various radial positions on the substrate were used to quantify the 

adhesion strength following exposure to a hydrodynamic flow created by rotation in a 

solution of known viscosity and density using a spinning disk device (Garcia, Ducheyne 

& Boettiger 1997). Briefly, a micropatterned substrate with the cells seeded on it was 

mounted on a spinning platform and spun in 2 mM dextrose in DPBS to apply well 

defined hydrodynamic forces to adherent cells. The applied shear stress τ (force/area) 

varies linearly from the center of the disk to the periphery according to Eq. (2.5). 

Following spinning for 5 min, the remaining adherent cells were fixed in 3.7% 

formaldehyde, permeabilized with 0.1% Triton X-100, and stained with Hoechst dye to 

identify the nucleus. The number of adherent cells was counted at specific radial 

positions using a Nikon eclipse Ti-U fluorescent microscope (Nikon Instruments, 

Melville, N.Y.) fitted with a motorized stage and NIS-Elements Advanced Research 

software (Nikon Instruments). 61 fields were analyzed per substrate and the number of 

cells at specific radial locations was then normalized to the number of cells at the center 

of the substrate where negligible shear stress was applied to calculate the fraction of 

adherent cells f . The detachment profile ( f  vs. τ) was then fit with a sigmoid curve 

given by Eq. (2.6). The shear stress for 50% detachment (τ50) was used as the mean cell 

adhesion strength. 
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 Statistical analysis 

Experiments were performed in triplicate in at least three independent 

experiments. Data are reported as mean ± SD of the mean, and statistical comparisons 

using SigmaPlot 11 (Systat Software, San Jose, CA) were based on analysis of variance 

and the Holm-Sidak test for pairwise comparisons, with a p-value < 0.01 considered 

significant. Curve fits of experimental data to specified functions were conducted in 

SigmaPlot. 

5.3 Results 

 Spatial organization of FAs 

NIH3T3 fibroblasts stained for vinculin (a structural FA protein) along with actin 

filaments and nuclei indicated preferential recruitment of vinculin towards the periphery 

of the cell-substrate interface (Fig 5.2). Using an intensity threshold algorithm provided 

by the image analysis software to detect intensity peaks in the green channel of the image 

further reinforces the observation of the distinct peripheral preference of FA organization 

in a spread cell at 16 h of incubation in CGM. Similar FA enrichment at the adhesive 

perimeter was observed previously on fully spread unconstrained and micropatterned 

cells (Gallant, Michael & Garcia 2005). 

 Micropatterned substrates to manipulate the cell adhesive interface 

Micropatterned surfaces consisting of adhesive and non-adhesive domains were 

used to control the cell-substrate adhesive area and restrict the cell shape by modulating 

spreading. This was necessary to investigate the regulation of cell adhesion strength by 

cell spreading independently of total adhesive area. μCP (Kumar, Whitesides 1993, 

Whitesides et al. 2001) was employed to pattern self-assembled monolayer domains of 
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alkanethiols onto which fibronectin was adsorbed within a non-fouling, non-adhesive 

background. However, the standard μCP technique resulted in irreversible roof collapse 

and propagation due to stamp instability for the small and sparse features and prevented 

their replication on the substrates as discussed in previous chapters 3 and 4. To overcome 

this parasitic roof collapse, the peripheral stamp stability was enhanced by embedding an 

annular column circumscribing the pattern zone in the stamp design (Fig 4.12). 

The μCP technique was previously applied to pattern surfaces to investigate the 

effects of cell spreading on cell survival (Chen et al. 1997), the contributions of cell 

adhesive area towards cell adhesion strength (Gallant, Michael & Garcia 2005, Gallant et 

al. 2002), and cytoskeletal interactions with the ECM (Chen et al. 2003, Chicurel, Chen 

& Ingber 1998). μCP was applied in this study to engineer the adhesive domains to 

investigate the effect of adhesive complex position on cell adhesion strength while 

maintaining similar cell shapes among treatments. Arrays of circular and annulus shaped 

islands were engineered to discern the contribution of cell spreading area and total cell 

adhesive area towards cell adhesion strength (Fig 5.3). The island dimensions were 

engineered to specifically allow for the delineation of total cell adhesive area from cell 

spreading area as summarized in Table 5.1. Spacing between the adhesive islands was 

maintained at 75 μm to avoid any cell-to-cell contact and ensure that each cell would 

interact with a single adhesive island. Fibronectin preferentially adsorbed onto the 

stamped islands, whereas the surrounding tri(ethylene glycol)-terminated regions 

remained devoid of fibronectin.  

 It was previously reported that NIH3T3 fibroblasts remained viable for several 

days when adhering to fibronectin-coated micropatterned circular islands with 
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dimensions ranging from 2 to 20 µm and remained constrained to the FN area (Gallant, 

Michael & Garcia 2005, Gallant et al. 2002). Similarly, in this study NIH3T3 cells 

adhered to fibronectin coated islands of similar dimensions and remained constrained to 

the patterned areas. Moreover the adhesive structures containing vinculin localized to and 

remained confined to the micropatterned domains, and cells maintained a nearly spherical 

or hemispherical morphology (Fig 5.4). Taken together, these results demonstrate control 

of cell adhesive area to engineer FA size and position which can be used to decouple the 

effect of cell spreading area and total cell adhesive area on adhesion strength.  

 Analysis of cell adhesion strength 

Cell adhesion strength was quantified using a well characterized spinning disk 

hydrodynamic shear assay that has been used extensively for investigating structure-

function relationships among adhesive components (Gallant, Michael & Garcia 2005, 

Gallant et al. 2002, Garcia, Ducheyne & Boettiger 1997, Garcia, Gallant 2003). This 

system applies a well defined range of hydrodynamic forces to a population of cells 

adhered to micropatterned islands and provides sensitive measurements of adhesion 

strength. It was previously established that the wall shear stress (τ) increases linearly with 

radial position (r) on the disk surface as given by Eq. 2.5. The shear stress for 50% 

detachment (τ50) was established as the adhesion strength to allow for quantitative 

comparisons between experimental conditions.  

In the previous work it was established that an area of approximately 78 μm2, 

which supports half maximal integrin binding, was a “set point” for the segregation of 

discrete receptor clusters and that the adhesive strength reaches a plateau at this adhesive 

area (Gallant, Michael & Garcia 2005). However, it is unclear whether this set point area 
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refers to total adhesive area or the extent of cell spreading as it was observed that integrin 

clustering and FA assembly were observed to be enriched at the periphery. Therefore, 

two distinct regimes are considered for analysis in the present study. Regime 1 consists of 

micropatterned islands with dimensions that support cell spreading areas up to 78 μm2 

and regime 2 consists of island dimensions that supported cell spreading areas greater 

than 78 μm2 (Fig 5.3). The results for adherent cells on adhesive islands in regime 1 (Fig 

5.5a) indicate that the redistribution of similar adhesive areas to annular shapes with 

larger diameters to allow for greater cell spreading enhances adhesion strength by 40% 

(comparing 6 µm diameter circular island and 10 µm outer, 8 µm inner diameter annulus 

island). Moreover, adhesion strength increased 35% when the adhesive area was 

enhanced for islands of similar spreading area (comparing 10 µm outer, 8 µm inner 

diameter annulus island and 10 µm diameter circular island). 

The results for adherent cells on adhesive islands in regime 2 (Fig 5.5b) indicate 

that redistribution of similar adhesive areas to annular shapes with larger diameters to 

allow for greater cell spreading with the same adhesive area did not enhance adhesion 

strength (comparing 10 µm diameter circular island and 25 µm outer, 23 µm inner 

diameter annulus island). Furthermore, comparing cells with similar spreading areas but 

different adhesive areas in regime 2 also clearly indicates that for constant cell spreading 

area, peripheral FAs accounted for 100% of the adhesion strength (comparing 25 µm 

outer, 23 µm inner diameter annulus island and 25 µm diameter circular island). These 

results indicate that rises in adhesion strength are limited to regime 1 and further 

reinforce the concept of a “set point” total adhesive area of ~78 μm2 to support maximum 

cell adhesion strength. 
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5.4 Discussion 

 Spatial distribution of FAs in regulating cell adhesion strength 

It has been observed that FAs tend to accumulate at the periphery of the adhesive 

contact area. The results demonstrated that the peripheral distribution of adhesive 

complexes occurs in cells that are constrained to micropatterned islands as well as cells 

spreading on uniform surfaces (Fig 5.2 and 5.4). In both cases, this arrangement of FAs 

allows large changes in cell shape and results in the cell spreading area exceeding the 

actual adhesive area. While this enrichment at the leading edge of migrating cells and its 

influence on cell traction has been studied extensively, the contribution of this 

phenomenon to adhesion strength has not yet been investigated.  

To understand the roles of cell spreading area and total cell adhesive area in 

modulating adhesion strength, experimentally obtained adhesion strength data were fitted 

as functions of spreading area (i) when cell adhesive area was equal to cell spreading area 

and (ii) when those same cell adhesive areas allowed for greater cell spreading by 

redistributing over annular shapes with larger diameters (Fig 5.6). It was observed that an 

exponential curve explained the rises in adhesion strength in both cases. However, when 

the adhesive areas were distributed to the periphery to allow for a greater extent of cell 

spreading, the non-linearity in the exponential curve is more pronounced. This implies 

that the non-linearity in the adhesion strength with respect to area as observed in earlier 

studies (Gallant, Michael & Garcia 2005) is predominantly due to the peripheral 

distribution of FAs.  

In regime 1, an enhancement in spreading area (independently of total adhesive 

area) by the peripheral distribution of FAs enhanced adhesion strength by 40% when the 
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outer radius was increased by ~65%. It can be inferred from this observation that below a 

“set point” area of 78 μm2, the total adhesive area alone cannot be used as a parameter for 

explaining adhesion strength but it can be used in conjunction with cell spreading area. 

The regulation of cellular processes by the extent of cell spreading and cell shape was 

first identified over three decades ago in primary investigations by Folkman et al. 

(Folkman, Moscona 1978). In addition to modulating adhesion strength, peripheral 

distribution of FAs has been shown to regulate several important processes during cell-

matrix interactions such as transducing cell shape signals in human tendon fibroblasts to 

regulate expression of collagen type I (Li et al. 2008). Cellular traction generated at the 

periphery of the cell by the FAs were reported to direct fibronectin matrix assembly in 

NIH3T3 fibroblasts during early phases of cell spreading (Lemmon, Chen & Romer 

2009). Investigations by Reinhart-King et al. also reinforce the fact that traction in bovine 

aortic endothelial cells increases linearly with cell spreading area and was observed to be 

maximum at the cell periphery (Reinhart-King, Dembo & Hammer 2003), implying that 

peripheral distribution of FAs not only regulates cell adhesion strength but regulates 

cellular traction as well.  

A second significant observation from this analysis is that in regime 1, adhesion 

strength increased only 35% when adhesive area was enhanced approximately 3-fold for 

islands of similar spreading area (comparing 10 µm outer, 8 µm inner diameter annulus 

island and 10 µm diameter circular island). This could be explained by increases in 

integrin binding and FA assembly which both continue to increase with adhesive area 

even beyond the 78 μm2 set point (Gallant, Michael & Garcia 2005). However, an 

alternative explanation remains to be explored. It is possible that the spatial distribution 
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of FAs results in a more complex organization of the cell’s cytoskeleton, and thus the 

way applied hydrodynamic forces are transmitted through the cell is altered. This idea of 

cytoskeletal reorganization to modulate cell adhesion strength has been previously 

explored in terms of the cytoskeletal prestress (Chen, Gao 2010) and also by the 

nanoscale adhesive interface when the spacing between the integrin ligands was varied 

(Cavalcanti-Adam et al. 2006, Selhuber-Unkel et al. 2010).  

 Validation of the ‘adhesive patch’ model 

Significant efforts towards understanding the mechanisms of cell adhesion have 

been made since the identification of adhesive components including adhesion receptors 

and FA complexes. Previously a model was proposed to explain the experimental 

observations of adhesion strengthening (Gallant, Andres J. Garcia 2007) which captures 

important points of the conceptual model originally developed by Ward and Hammer 

(Ward, Hammer 1993, Ward, Dembo & Hammer 1994). The model was based on the 

concept of a 1 µm adhesive patch providing a tensional force of 200 nN that resists the 

peeling detachment force. The non-linear increase in adhesion strength with adhesive 

area was explained in terms of a moment arm that increases with adhesive area which 

enhanced the ability of the adhesive patch to withstand the peeling force.  

Since it was hypothesized that the FAs at the periphery rather than the total 

adhesive area regulated adhesion strength, the micropatterned islands employed in this 

study provided for further experimental testing of the adhesive patch model for cell 

adhesion strengthening. The formulation derived by Gallant et al. was employed for 

evaluating adhesive patch bond strength  calculated based on Eq. (2.1). The forces 

from all segments were added to calculate , which was referred to as the adhesive patch 

TF

TF
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force. For the simulation purpose, we assumed =1, =0.33, and =600; and used the 

previously published value of integrin-ligand bond strength =100 pN (Coussen et al. 

2002, Li et al. 2003). To obtain adhesion strength predictions from the model, mechanical 

equilibrium was applied to the macroscopic model and the resulting critical shear stress 

(adhesion strength) for a spherical cell and hemispherical cell is given by Eq. (5.1) and 

Eq. (5.2) respectively (Gallant, Andres J. Garcia 2007, Goldman, Cox & Brenner 1967). 

 }])/8.0(1[32/{ 5.022 aRRFT  (5.1)

 )5/( 2aFT    (5.2)

To understand how the observed rises in the adhesion strength are related to the 

peripheral distribution of adhesive complexes independently of total adhesive area, the 

experimentally obtained adhesion strength was plotted against cell spreading area and 

compared to the simulated values of adhesion strength (Fig 5.7). It was observed that in 

regime 1, the current model was able to strongly predict the adhesion strength for cells on 

islands with peripherally distributed FAs. However, the observation of enhanced 

adhesion strength for the solid circular island over the annulus with similar outer 

diameters indicates that either (i) this simple model does not fully capture the effects of 

spatial distribution of adhesive complexes throughout the adhesive area, or (ii) the 

adhesion strength rises are not solely governed by events at the adhesive interface but 

rather by the cumulative contributions from other biophysical parameters such as the 

cell’s cytoskeletal organization that might affect adhesion strength by regulating the 

cell’s internal force balance. 
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 FA size in regulating cell adhesion strength  

FA size has been established as a putative mechanotransducer that provides for a 

direct correlation to cellular traction (Balaban et al. 2001). Moreover, FA size has 

consistently been reported to transduce cell shape (i.e., extent of spreading) signals into 

contractility which is externally expressed as cellular traction and has been established to 

play a major role in cell survival for several cell types (Chen et al. 1997, Chen et al. 1998, 

Chen et al. 2003, Wang et al. 2002). A recent report by Rape et al. demonstrated that cell 

shape affects traction and, more importantly, that FA size regulates local as well as global 

control of cellular traction (Rape, Guo & Wang 2011). Moreover, cellular traction and 

FA size increased linearly as the distance of the FAs increased from the cell’s moment 

center. When the peripheral FA size was restricted to 2 µm, no increases in local or 

global cellular traction was observed at increased distance (Rape, Guo & Wang 2011). 

However, from the current study, it can be concluded that individual FA size (above a 

minimum patch size of 1 μm) does not directly regulate adhesion strength on a global 

scale. This stark contrast is exemplified by the fact that adhesion strength for 10 µm 

outer, 8 µm inner diameter annulus islands and 25 µm outer, 23 µm inner diameter 

annulus islands is significantly different even though the effective FA size is limited to 1 

μm at the periphery. 

 Mechanistic role of FAs in the two spatial regimes 

A primary role of FAs is to enhance the structural integrity of the integrin clusters 

thus leading to enhancement in the adhesion strength (Gallant, Michael & Garcia 2005, 

Dumbauld et al. 2010, Kloboucek et al. 1999). Consistent with previously reported 

observations, we found that adhesion strength is enhanced by increasing total cell 
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adhesive area (Gallant, Michael & Garcia 2005, Dumbauld et al. 2010). A surprising 

finding is that adhesion strength rises by either enhancing the total available area or the 

cell spreading area, but the saturation value is governed by the total adhesive area of ~78 

μm2 irrespective of the spatial distribution of adhesive complexes. The possibility that the 

adhesion strength reaches saturation due to limiting receptor or ligand availability has 

been ruled out in earlier investigations which indicate that the set point area of ~78 μm2 is 

only the half maximal binding value of integrins and FA proteins (talin and vinculin) 

(Gallant, Michael & Garcia 2005). However, alternative explanations remain to be 

explored. A possible biophysical explanation for the total adhesive area to govern the 

saturation of adhesion strength could be the fact that the shape of a cell in vivo where 

spreading is minimal might only require a total contact area of ~78 μm2 to effectively 

adhere and perform various cellular functions as opposed to the larger spreading areas 

which are observed in vitro. 

In addition, these results further reinforce that the nonlinearity in the adhesion 

strength is predominantly due to the adhesive complex position since only a relatively 

small increase in the radius (65%) was required to achieve an enhancement in adhesion 

strength similar to that which required a 3-fold increase in the adhesive area. This 

analysis demonstrates that the distribution of adhesive patches away from the cell center 

is more efficient for stabilizing cell attachment than uniformly dispersing the adhesive 

complexes over greater areas.  

Contrasting to the observations of adhesion strengthening, investigations of 

cellular traction indicate that as the cell spreading area is increased from 500 µm2 to 3000 

µm2, the magnitude of traction increases linearly (Wang et al. 2002, Reinhart-King, 
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Dembo & Hammer 2003). It has also been observed that inhibition of contractility 

drastically reduces the cellular traction with dissolution of vinculin containing FAs (Cai 

et al. 2010). However, inhibiting the formation of FAs reduced adhesion strength only by 

30% irrespective of the cell spreading area (Gallant, Michael & Garcia 2005, Dumbauld 

et al. 2010). These observations collectively suggest that the functional role of FAs is 

different in governing the cell adhesion strength and ability to apply cellular traction. To 

explain the structure-function role of FAs in the two regimes of adhesion strengthening, 

we hypothesize that FAs in regime 1 primarily enhance adhesion strength and provide 

anchorage to the underlying substrate, whereas in regime 2, their mechanistic function 

might be to transduce signals so as to provide traction stresses that are critical to the 

regulation of important cellular functions including mechanosensation and migration. In 

other words, a threshold spread area and quantity of FA reinforced integrin bonds is 

required for maximal adhesion strength, but additional FA enhancement and 

redistribution provides additional mechanical functions without altering cell adhesion 

strength. 

5.5 Conclusions 

A systematic study of the effect of the spatial distribution of FAs on cell adhesion 

strength was conducted by modulating cell adhesive area independently of spreading area 

via micropatterning. This approach enabled the identification of novel biophysical 

properties of FAs that contribute to adhesion strength, but which contrast sharply with 

established FA-cellular traction structure-function relationships. Directing FA assembly 

to the cell periphery demonstrated that the distribution of adhesive patches away from the 

cell center is more efficient for stabilizing cell attachment than uniformly dispersing the 
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adhesive complexes over greater areas, and results in nonlinear increases in adhesion 

strength. However, the maximum cell adhesion strength is governed by the total adhesive 

area. In addition, individual FA size does not directly regulate global adhesion strength. 

In contrast, cellular traction increases linearly with FA size and its distance from the 

cell’s moment center. This work establishes for the first time that the functional role of 

FAs is different in governing the cell adhesion strength and applying cellular traction. 
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Table 5.1 Micropattern dimensions and corresponding areas 

Micropattern 
Cell Adhesive 

Area 

Cell Spreading 

Area 

6 µm diameter circular island 28 µm2 28 µm2 

10 µm outer, 8 µm inner diameter annulus 

island 
28 µm2 78 µm2 

10 µm diameter circular island 78 µm2 78 µm2 

25 µm outer, 23 µm inner diameter annulus 

island 
78 µm2 490 µm2 

25 µm diameter circular island 490 µm2 490 µm2 
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Fig 5.1 Schematic diagram of cells adhered to micropatterned islands that delineate cell 

adhesive area and cell spreading area.  
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Fig 5.2 Immunostained image of a cell. (a) Spread cell [blue: nucleus, red: f-actin and 

green: vinculin]. (b) Same cell thresholded for peak intensities of vinculin staining 

(bars=10 µm). 

 

a b
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Fig 5.3 Immunostaining indicates fibronectin adsorbed only to micropatterned islands. (a) 

6 µm diameter circular islands; (b) 10 µm outer, 8 µm inner diameter annulus islands; (c) 

10 µm diameter circular islands; (d) 25 µm outer, 23 µm inner diameter annulus islands; 

(e) 25 µm diameter circular islands (bars=50 µm).  
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Fig 5.4 Immnunostained images showing fibronectin, actin, nucleus and vinculin on 

micropatterned islands. (a-c) Solid circular and (d-f) annular islands were coated with 

(a,d) fibronectin to regulate cell spreading and focal adhesion assembly. (b, e) Adherent 

cells were immunostained to identify adhesive structures [blue: nucleus, red: f-actin and 

green: vinculin]. (c, f) Images were thresholded for the peak intensities of vinculin 

staining (bars=10 µm). 
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Fig 5.5 Mean adhesion strength (50) at steady state for cells patterned on micropatterned 

domains. (a) Regime 1 up to 78 μm2 adhesive area and (b) regime 2 from 78 μm2 to 490 

μm2 adhesive area (* indicates significant difference P<0.001). 
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Fig 5.6 Cell spreading area and cell adhesive area. Each regulates steady state adhesion 

strength. Data are plotted separately for circular and annular islands of two corresponding 

adhesive areas. Exponential curves describe the relationships between adhesion strength 

and spreading for the different focal adhesion distribution conditions. Symbols represent 

mean values but the curves were fit to all data points.  

Spreading Area (m
2

)

0 100 200 300 400 500

A
dh

es
io

n 
S

tr
en

gt
h 

(d
yn

e/
cm

2 )

0

100

200

300

400

500

600

700

Cell adhesive area=cell spreading area
Peripherally distributed adhesive area
Cell adhesive area=cell spreading area 

(exponential fit; r2=0.95)
Peripherally distributed adhesive area 

(exponential fit; r2=0.92)

Constant adhesive area 
(78 µm2)

Constant adhesive area (28 µm2)



117 

 

 

Fig 5.7 The experimental cell adhesion strength-spreading relationship for peripherally 

distributed focal adhesions agrees well with theoretical predictions of the adhesive patch 

model. Data are plotted separately for circular and annular islands. Exponential curves 

describe the relationships between adhesion strength and spreading for the different focal 

adhesion distribution conditions. Symbols represent mean values but the curves were fit 

to all data points. 
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Chapter 6. Mechanical Role of Microtubules in the Evolution of Cell Adhesion 

Strength 

6.1 Introduction 

Cell adhesion to extracellular matrix (ECM) is known to regulate important 

cellular functions such as cell spreading, cell migration, cell proliferation and apoptosis 

on a local scale and tissue morphogenesis on a global scale (Berrier, Yamada 2007). This 

is a complex process involving recruitment of receptors onto the surface; specifically 

heterodimeric receptors that belong to the integrin family (García, Boettiger 1999, Hynes 

2002). These receptors then cluster together and recruit intracellular proteins such as 

vinculin, talin, paxillin and zyxin that form adhesion complexes, or focal adhesions 

(Geiger et al. 2001). These focal adhesions interact with cytoskeletal components and are 

further reinforced due to actin-myosin contractility, providing stability to the adhesions 

(Dumbauld et al. 2010). Early efforts in understanding the mechanism of adhesion 

strengthening was interpreted through membrane peeling where focal adhesions required 

the highest peeling force followed by integrin clusters and then the uniformly distributed 

receptors (Evans 1985, Lotz et al. 1989). However, with the advent of micropatterning 

techniques coupled with hydrodynamic shear assays, the contributions of adhesive area, 

integrin binding and focal adhesion assembly towards cell adhesion strength were 

experimentally analyzed (Gallant et al. 2002, Gallant, Michael & Garcia 2005, Gallant, 

Garcia 2007).  
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 Taking a closer look at membrane peeling mechanism to explain the adhesion 

strength, it is understood that the applied force is transferred to the focal adhesions on the 

substrate through the cell’s cytoskeleton and the membrane. Whereas these mechanical 

connections inside the cell are well documented, (Wang, Butler & Ingber 1993, Maniotis, 

Chen & Ingber 1997) the contribution of these components towards the evolution of 

adhesion strength remains unexplained. Moreover, it is understood that various cellular 

functions are controlled by the balance of internal and external cellular forces (Chicurel, 

Chen & Ingber 1998). Although, various cytoskeletal components such as actin filaments, 

microtubules and intermediate filaments might contribute to the expression of adhesion 

strength, only the actin system has been extensively studied. The microtubular system, on 

the contrary, has been studied in terms of its involvement in cell spreading, migration, 

motility, cell polarity and DNA synthesis (Ballestrem et al. 2000, Watanabe, Noritake & 

Kaibuchi 2005, Finkelstein et al. 2004, Small, Kaverina 2003, Bershadsky et al. 1996, 

Kadi et al. 1998). However, apart from the fact that involvement of microtubules in 

adhesion dependent signaling was investigated (Bershadsky et al. 1996), little is known 

as to the contribution towards cell adhesion strength. 

  Prior investigations indicated that microtubule disruption affects the integrin 

dependent signaling cascade that in turn leads to the matrix adhesion assembly and also 

the induction of DNA synthesis (Bershadsky et al. 1996). Moreover, cell contractility is 

found to be an intermediate step in this signaling cascade (Bershadsky et al. 1996). Here, 

the role of microtubules in providing the necessary cellular integrity towards adhesion 

strengthening was investigated. Specifically, the effect of microtubule disruption on the 
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spatiotemporal evolution of cell adhesion strength was investigated by using 

pharmacological inhibitors. 

6.2 Experimental Section 

 Reagents 

Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA) supplemented 

with 10% new born calf serum (Invitrogen) and 1% penicillin-streptomycin (Invitrogen) 

was used as complete growth media (CGM). Cell culture reagents, including human 

plasma fibronectin and Dulbecco’s phosphate-buffered saline (DPBS), and AlexaFluor 

488-conjugated secondary antibodies, Hoechst-33242, tubulin tracker green and 

rhodamine-conjugated phalloidin were purchased from Invitrogen. Chemical reagents, 

including 1-hexadecanethiol [H3C(CH2)15SH] and tri(ethylene glycol)-terminated 

alkanethiol [HO(CH2CH2O)3(CH2)11SH], and anti-fibronectin polyclonal and anti-

vinculin antibodies were purchased from Sigma-Aldrich. Nocodazole was purchased 

from Sigma. 

 Elastomeric stamps 

Master templates of required patterns were fabricated on silicon wafers using 

standard photolithography techniques.  Briefly, positive photoresist (Shipley 1813) was 

spun onto a precleaned silicon wafer to a thickness of approximately 2 μm.  Sequential 

UV exposure of the resist was required to produce features of two size scales (10-6 and 

10-4 m) with a single development on the template.  The wafer was subjected to a primary 

exposure through an optical mask containing the required low fill factor stamp features in 

the pattern zone followed by a secondary exposure through an optical mask containing 

the annular peripheral zone.  This feature was necessary to prevent the parasitic roof 
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collapse inherent to low fill factor, large structural aspect ratio stamp designs. The 

exposed areas were developed leaving behind a template of recessed features.  Templates 

were then exposed to (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl)-1-trichlorosilane (Sigma-

Aldrich) in a dessicator under vacuum to prevent the polydimethylsiloxane (PDMS) 

elastomer from adhering to the exposed silicon.  The PDMS precursors and curing agent 

(Sylgard 184, Dow Corning Corporation, Midland, MI USA) were mixed in the 

recommended ratio (10:1), degassed under vacuum, poured over the template in a 100 

mm diameter flat dish to a thickness of 5 mm, and cured at 65 °C for 2 h.  The cured 

PDMS stamp containing the desired features was then peeled from the template and cut 

into a 25 mm square ensuring the annular region was at the periphery. 

 Substrates  

Glass coverslips (25mm in diameter) were sonicated in 50% ethanol, dried under 

a stream of compressed N2 and then oxygen plasma cleaned for 5 min (PE50, Plasma 

Etch, Inc., Carson City, NV). These coverslips were sequentially coated with 10 nm of 

titanium and 20 nm of gold at a deposition rate of 0.5 Å/s in an electron beam evaporator. 

 Microcontact printing 

For microcontact printing (μCP), the flat back of the stamp was allowed to self 

seal to a glass slide to provide a rigid backing. The stamp was inked with 2 mM 1-

hexadecanethiol (Sigma-Aldrich) and then gently blown dry with compressed N2. The 

stamp was gently placed on the substrate to ensure conformal contact of the features over 

the entire area of substrate.  The stamp was kept in contact for 10 s to produce an array of 

CH3-teminated monolayer islands, to which proteins readily adsorbed. The stamp was 

then carefully separated from the substrate with the help of tweezers. The patterned 
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substrates were incubated in 2 mM ethanolic solution of tri(ethylene glycol)-terminated 

alkanethiol for 2 h to create a non-adhesive background around the CH3-terminated 

islands. The substrates were rinsed in 95% ethanol and gently dried under a stream of N2.  

 Protein patterning 

The substrates were incubated with fibronectin (20 μg/m or 100μg/ml in DPBS) 

(Invitrogen) for 30 min and then blocked with denatured (65oC, 2 h) 1% bovine serum 

albumin (Fisher Scientific, Fair Lawn, New Jersey) for 30 min to avoid non-specific 

protein adsorption. 

 Cell patterning  

NIH3T3 fibroblasts (American Type Culture Collection, Manassas, VA) were 

cultured in CGM on tissue culture polystyrene. Cells were passaged every other day and 

used between passages of 5 and 20. For experiments, cells were enzymatically lifted from 

the culture dish using trypsin/EDTA (Invitrogen) and then seeded onto these 

micropatterned substrates at a density of 225 cells/mm2 in CGM. For spread cell adhesion 

experiments, the cell seeding was maintained lower than 100 cells/mm2 to avoid cell-cell 

contact. 

 Cell adhesion assay 

Cell counts at various radial positions on the substrate were used to quantify the 

adhesion strength following exposure to a hydrodynamic flow created by rotation in a 

solution of known viscosity and density using a spinning disk device (Garcia, Ducheyne 

& Boettiger 1997). Briefly, a micropatterned substrate with the cells seeded on it was 

mounted on a spinning platform and spun in 2 mM dextrose in DPBS to apply well 

defined hydrodynamic forces to adherent cells. The applied shear stress τ (force/area) 
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varies linearly from the center of the disk to the periphery according to Eq. (2.5). 

Following spinning for 5 min, the remaining adherent cells were fixed in 3.7% 

formaldehyde, permeabilized with 0.1% Triton X-100, and stained with Hoechst dye to 

identify the nucleus. The number of adherent cells was counted at specific radial 

positions using a Nikon eclipse Ti-U fluorescent microscope (Nikon Instruments, 

Melville, N.Y.) fitted with a motorized stage and NIS-Elements Advanced Research 

software (Nikon Instruments). 61 fields were analyzed per substrate and the number of 

cells at specific radial locations was then normalized to the number of cells at the center 

of the substrate where negligible shear stress was applied to calculate the fraction of 

adherent cells f . The detachment profile ( f  vs. τ) was then fit with a sigmoid curve 

given by Eq. (2.6). The shear stress for 50% detachment (τ50) was used as the mean cell 

adhesion strength. 

 Cytoskeletal disruption 

Experiments were preformed in serum, serum free and serum starved conditions. 

Serum conditions refer to cells cultured in complete growth medium (CGM). Serum free 

refers to cells cultured in serum free media (0.1% ITS-G, 1% BSA, 1% P/S and DMEM). 

Serum starved condition refers to cells cultured in serum for incubation time and then 

serum starved with serum free media. For microtubule depolymerization, 10 μm 

nocodazole in DMSO was added to the media for adhesion analyses. 

 Statistical analysis 

Experiments were performed in triplicate in at least three independent 

experiments. Data are reported as mean ± SD of the mean, and statistical comparisons 

using SigmaPlot 11 (Systat Software, San Jose, CA) were based on analysis of variance 
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and the Holm-Sidak test for pairwise comparisons, with a p-value < 0.01 considered 

significant. Curve fits of experimental data to specified functions were conducted in 

SigmaPlot. 

6.3 Results and Discussion 

 Effect of microtubule disruption on cell spreading area and cell morphology 

 The microtubular system in spread cells was fully developed at incubation times 

of over 16 hr, similar to the actin filament system (Fig 6.1a). To investigate the cell 

spreading and morphology responses without the microtubular system, 10 μm nocodazole 

in DMSO was added to the medium and allowed to incubate for 30 minutes for 

microtubules disruption as previously described (Bershadsky et al. 1996). Fluorescent 

images of tubulin tracker labeling indicated complete destruction of microtubules after 

nocodazole treatment in CGM (Fig 6.1b). A similar response was observed for cells in 

serum free and serum starved conditions (data not shown). However, actin filaments were 

intact with focal adhesions visualized by immunostaining for vinculin on nocodazole 

treated cells under various serum conditions (Fig 6.2) in agreement with previous 

observations (Bershadsky et al. 1996). The importance of the presence of serum is that 

actin-myosin contractility is maintained and by starving the cells of serum, this 

contractility is lost resulting in various consequences including effect on cell adhesion 

strength (Dumbauld et al. 2010). Whether there was a change in the contractility upon 

microtubule disruption as determined by visualizing the enhancement in actin filaments 

was dependent on the serum conditions. It was observed that enhancement in actin 

filaments was not observed in cells cultured under serum free conditions. However for 

the cells cultured in serum or serum starved conditions, enhancement in the focal 
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adhesions and the actin filaments was observed when nocodazole was introduced (Fig 

6.2).  

Earlier studies indicated that with microtubule disruption following treatment 

with nocodazole, the focal adhesions and actin filaments are reinforced.(Bershadsky et al. 

1996) So the next investigation was on this effect experimented systematically in serum, 

serum free and serum starved conditions. In the case of cells in serum and treated with 

nocodazole, no significant differences were found either in the cell spreading area or cell 

morphology compared to untreated controls. In cells cultured in serum-free media, our 

image analysis indicates that actin fibers and focal adhesions drastically reduced and the 

cells took a spherical morphology upon treatment with nocodazole (Fig 6.3). It was 

inferred from the quantification of cell spreading area that there was significant reduction 

in the cell spreading area only in the cells that were cultured in serum free media when 

treated with nocodazole. Moreover, the cells cultured in serum free media took a 

spherical morphology upon treatment with nocodazole (Fig 6.4). However, in serum 

starved cells, reinforcement in the actin filaments was observed with no significant 

change in the cell spreading area and cell morphology as observed elsewhere (Fig 6.3, 

6.4) (Bershadsky et al. 1996). 

 Effect of microtubule disruption on cell adhesion strength in fully spread cells 

   It has been established by studies from other research groups that contractility 

enhances adhesion strength by approximately 30% under the condition that microtubule 

network is undisturbed (Dumbauld et al. 2010). While it is also established that 

microtubule disruption enhances contractility in a variety of cell types, (Bershadsky et al. 

1996, Kadi et al. 1998) it is valuable to investigate whether such contractility 
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enhancement alters cell adhesion strength. Since cell adhesion to ECM is related to the 

cellular force balance through cytoskeletal components, (Maniotis, Chen & Ingber 1997, 

Chicurel, Chen & Ingber 1998, Ezzell et al. 1997, Chen et al. 2003) it was hypothesized 

that this increase in contractility would result in the enhancement in the cell adhesion 

strength. Utilizing, hydrodynamic shear assay the differences in the adhesion strength 

were examined between untreated cells and cells treated with nocodazole under serum 

and serum free treatment conditions (Fig 6.5). It is surprising that for cells in serum, 

microtubule disruption did not significantly change the adhesion strength whereas for the 

cells in serum free media, adhesion strength slightly decreased concurrently with the 

morphology of the cells changing to spherical. Whether this decrease in adhesion strength 

was due to failure at the integrin-ECM sites due to enhancement in cell contractility as 

described elsewhere (Kadi et al. 1998) needs to be investigated. Moreover, whether this 

interpretation is valid for both serum and serum free conditions remains to be explored. 

These results reinforce the concept that the cellular internal force balance is a central 

modulator of the cell adhesion strength and that the forces from inside the cell (both 

tensional and compressive) must be in perfect balance during cell adhesion to ECM. 

However, it is still unclear whether tensional forces due to contractility or the 

microtubules (bearing compressive loads due to the contractility of actin-myosin) 

dominate in enhancing cell adhesion strength. So next, adhesive area was modulated to 

change cell shape and investigate its effect on cell adhesion strength since it is well 

documented that cell shape modulates cell internal force balance (Chicurel, Chen & 

Ingber 1998, Chen et al. 2003, Chen, Ingber 1999)(Chen et al. 2003). 
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 Cell shape strongly modulates the effect of microtubule disruption on cell 

adhesion strength 

  Since it was demonstrated that cell shape (morphology) can be modulated by 

engineering the cell adhesive area, (Gallant et al. 2002) the effect of microtubule 

disruption on cell adhesion strength was investigated between spread cells and cell 

adhered to micropatterned islands. It was hypothesized that microtubule disruption in 

cells with spherical and hemispherical morphology significantly reduces cell adhesion 

strength since tight balance between tensional and compressive forces exist. 

Micropatterned island geometries used in our earlier study were employed i.e., 10 μm 

diameter circular islands and 25 μm outer and 23 μm inner diameter annular patterns to 

achieve spherical and hemispherical cell morphology. This enabled to achieve alteration 

of force balance through modulation of cell shape for further investigation (Fig 6.6). 

 Interestingly, it was observed that for cells on both the micropatterns, there was 

an approximate 10 fold decrease in the adhesion strength for the cells treated with 

nocodazole compared to untreated cells under serum conditions (Fig 6.7). The two 

possible reasons for the observed dramatic decrease in the adhesion strength could be that 

(a) the disruption of microtubules affects cellular cytoskeletal integrity and compromises 

the force balance or (b) the enhancement in the contractility following microtubule 

disruption could be large enough to aid in the failure of the integrin-ECM bonds due to 

the tensional forces from the inside of the cell. It is worthwhile to note that when a cell is 

subjected to hydrodynamic flow, both these effects are enhanced at small adhesive areas 

(approximately only 10% of the area of a fully spread cell) as can be understood from the 

non-linear adhesion model (Dumbauld et al. 2010, Gallant, Michael & Garcia 2005). 



131 

 

However, similar experiments performed on spread cells (Fig 6.5) did not significantly 

alter the adhesion strength. It can be inferred from this analysis that a threshold spreading 

area exists at which the internal force balance would change and the effect of microtubule 

disruption on adhesion strength would be less pronounced. 

 Microtubules in temporal evolution of adhesion strength 

In the previous analysis, steady state adhesion strength was examined wherein the 

microtubular system was fully developed and then disrupted using pharmacological 

inhibitors. However, it is important to understand the role of microtubules in adhesion 

strengthening (temporal evolution) since microtubule disruption is known to affect focal 

adhesion assembly and disassembly (Digman et al. 2008). To perform the experiment, 10 

μM nocodazole was added to CGM at the time of cell seeding and cells were subjected to 

hydrodynamic flow for adhesion analysis at 1, 2, 4 and 16 hr. As expected, adhesion 

strength responses with respect to time were non-linear (Fig 6.8). However, a surprising 

finding was that the adhesion strength saturated at 25% of the maximum adhesion 

strength for a fully spread cell in serum. Also comparing these results (Fig 6.8) to 

previously described results (Fig 6.5) wherein the microtubular system was allowed to 

develop for 16 hr and then depolymerized using nocodazole, the adhesion strengths were 

4 fold different. This implies that microtubule polymerization is vital to the temporal 

evolution of adhesion. Moreover, just maintaining the contractility in a cell either by the 

presence of serum or the disruption of microtubules does not contribute enough to the 

adhesion strength but it can be concluded that cell internal force balance is required for 

adhesion strengthening. Furthermore, it can also be inferred that adhesion assembly and 

disassembly is required for the cell to express its maximum adhesion strength by 
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relocating focal adhesions to the periphery (Gallant, Michael & Garcia 2005, Gallant, 

Andres J. Garcia 2007, Digman et al. 2008). 

6.4 Conclusion 

Previous investigations extensively studied the involvement of microtubules in 

the adhesion signaling process. This work establishes that microtubules play a vital role 

in stabilizing cell substrate adhesions. Moreover, the morphological changes due to 

microtubule disruption were systematically studied under various treatment conditions 

resulting in the investigation of the role of microtubules in maintaining cell shape. The 

spatiotemporal evolution of adhesion strength was studied with respect to the 

contribution of microtubules. This work establishes that internal cellular force balance is 

required for the cell to express its maximum adhesion strength and that this effect is more 

pronounced when the cell is more spherical. Moreover, it can be inferred that contractility 

alone does not regulate adhesion strength rather; the complex interplay between the actin 

and microtubular system giving rise to force balance regulates cell adhesion. 
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Fig 6.1 Fluorescent images of microtubules stained by tubulin tracker. Images show (a) 

well developed microtubular network at 16 hr in serum (b) disruption of microtubules by 

adding 10 μM nocodazole for 30 min. 

  

a b
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Fig 6.2 Immunostained images of cells under various treatment conditions with and 

without nocodazole. Red represents actin filaments, green represents vinculin and blue 

represents the nuclei. Images show (a) cells in serum (b) cells in serum with nocodazole 

treatment (c) cells cultured in serum free media (d) cells cultured in serum free media 

with nocodazole treatment (e) cells in serum starved media (f) cells in serum starved 

media with nocodazole treatment (Note the enhanced actin filament formation). (Bar=25 

μm.)  
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Fig 6.3 Cell spreading area dependence on various treatment conditions with serum and 

nocodazole.  
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Fig 6.4 Dependence of the circularity of cells under various treatment conditions with 

serum and nocodazole. 
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Fig 6.5 Variation of adhesion strength with respect to various treatment conditions with 

serum and nocodazole. 
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Fig 6.6 Immunostained images of fibronectin coated micropatterned islands. Images 

represent (a) 10 µm diameter circular islands (b) 25 µm outer, 23 µm inner diameter 

annular islands. (Bar= 50 µm) 
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Fig 6.7 Adhesion strength of cells cultured in serum showing approximately 10 fold 

variation between nocodazole untreated and treated cells on micropatterned islands.  

   

Treatment conditions

10 µm 10 µm+nocodazole 25 µm annulus 25 µm+nocodazole

A
dh

es
io

n 
st

re
ng

th
 (

dy
ne

/c
m

2 )

0

100

200

300

400

500

600

700



140 

 

 

Fig 6.8 Temporal evolution of adhesion strength for cells cultured in serum and cells 

cultured in serum and nocodazole. 
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Chapter 7. Conclusions and Future Considerations 

The overall objective of the project was to design an experimental platform to 

investigate the role of peripheral focal adhesions in modulating the cell adhesion strength. 

The hypothesis that the peripheral focal adhesions stabilize cell adhesion to ECM was 

formulated based on the previous findings that bond loading is non-uniform across the 

adhesive area of the cell and the membrane peeling mechanisms that explain the adhesion 

strength based on the ability of the cell to remain attached when subjected to detachment 

forces. Although non-linear bond loading models for explaining cell adhesion strength 

were widely accepted, this study provided an experimental platform for the validation of 

such a model. The systematic analysis of the regulation of adhesion strength by the 

position of focal adhesions expands our understanding of the structural and functional 

role of focal adhesions in cell adhesion which is known to be fundamental to the 

regulation of various biophysical cellular processes like cell spreading, migration, 

motility and cellular traction. 

The first goal was to develop a stamp design that could be used to microcontact 

print the required geometries with alkane thiol ‘ink’ onto Au surfaces. However, the 

small and sparse features reaching the limit of the microcontact printing stamp stability 

resulted in a phenomenon of roof collapse. Hence accurate replication of pattern 

geometries onto the substrates was challenging. Therefore, the roof collapse phenomenon 

was studied and the results suggested that non-uniform pressure distribution during initial 
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contact of the stamp onto the surface initiated roof collapse and hindered the accurate 

replication of the stamp features. Hence an annular column surrounding the pattern zone 

was embedded in the stamp design to provide for additional stability and it also acted as a 

barrier to prevent roof collapse propagation into the pattern zone. Utilizing this modified 

stamp design the required circular and annular features required for this study were 

successfully replicated on the substrates for further protein incubation. 

Once the patterns were replicated on the substrates, standard protein incubation 

protocols allowed for successful protein adsorption to the patterned island within a non-

fouling background. By combining these micropatterned surfaces with robust 

hydrodynamic shear assay, cell adhesion strength was analyzed on various patterns. The 

patterns used in this study were circular and annular patterns. The significance of annular 

patterns is that for the same total adhesive area as that of circular patterns, the annular 

patterns provided for enhanced cell spreading area by distributing the focal adhesions to 

the cell periphery. Upon adhesion strength analysis, it was found that for the same total 

adhesive area, annular patterns provided for greater adhesion strength indicating the cell’s 

preference for recruiting focal adhesions to the periphery for stabilizing focal adhesions. 

Moreover, it was clear from the results that the bond loading on a cell is highly non-

uniform as was proposed in previous theoretical models. Also the stark contrast between 

the role of focal adhesions in cell adhesion strength and traction forces was that cell 

adhesion strength showed a non-linear variation with spreading area whereas previously 

published reports of cellular traction indicated linear variation with spreading area. This 

implies that the regulatory role of focal adhesions in cell adhesion is different from that 

of cellular traction. Moreover, the size of the focal adhesions directly governed the 
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magnitude of traction that was applied on the surface whereas no such correlation was 

observed in the adhesion strength. 

Since cytoskeletal components are known to play a major role in regulating 

various cellular processes and fundamentally cell adhesion, the next studies were on the 

specific contribution of microtubules towards regulating cell adhesion strength. Although 

actin filaments have been extensively studied as a regulator of cell adhesion and traction 

through focal adhesions, few studies investigated the structural role of microtubules in 

cell adhesion. Hence the microtubule network was disrupted and its effect on the 

adhesion strength was studied under various serum conditions. However, for spread cells 

in serum, no enhancement in the adhesion strength was observed even though 

microtubule disruption was known to enhance cell contractility. Hence the next study was 

aimed at altering the force balance in a cell by modulating the cell shape by engineering 

adhesive islands so that the cell takes approximately spherical and hemispherical shapes. 

Disruption of microtubules in these micropatterned cells resulted in a 10 fold decrease in 

the adhesion strength whereas previous studies indicate that inhibition of actin-myosin 

contractility only reduced the adhesion strength by 30% in both micropatterned and 

spread cells. However, a similar experiment performed on completely spread cells did not 

alter the adhesion strength upon microtubule disruption. It was inferred from this result 

that cellular force balance transduced by cell shape regulates cell adhesion strength much 

more effectively than individual adhesive regulators like focal adhesions or expression of 

cell contractility. Moreover, the temporal evolution of adhesion strength was also studied 

wherein focal adhesion disassembly is inhibited by inhibiting microtubule polymerization 

and was found that adhesion strength was 4 fold lower than the maximum adhesion 
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strength of the cells in serum. Overall, this indicates that microtubules regulate cell 

adhesion strength by providing cellular integrity and necessary force balance which in 

turn is dependent on the cell shape. 

An important extension of this research would be to systematically study the 

mechanotransduction of cellular force balance through cell shape modulated by 

microtubules. Due to the inference that disruption of microtubules had a dramatic effect 

on the adhesion strength for cells on adhesive islands much smaller than the diameter of 

the cell (approximately spherical cell shape) and that disruption of microtubules had no 

effect on spread cells at steady state, it is important to understand the transduction 

process in relation to cell shape for providing adhesion strength. Based on the fact that 

force balance can be modulated by cell shape, various micropattern geometries can be 

utilized to systematically investigate the threshold spreading area at which actin system 

dominates over the force balance condition in regulating the cell adhesion strength to 

further explain the observations in this study.  

Overall, this project establishes the structure-function role of the peripheral focal 

adhesions in regulating adhesion strength. Moreover, it provides valuable insights into 

the regulation of adhesion strength with respect to force balance inside the cell which is 

an important component of the cell’s mechanotransduction mechanism. These findings 

and future work in this research area can provide insights into the adhesion related 

mechanotransduction mechanisms and provide for the better understanding of the cellular 

processes based on cell adhesion. This field of research is expected to contribute to the 

evolution of tissue engineering by providing valuable cues to engineer biomaterials for 

various in vitro and in vivo applications. 
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